Advertisements
Advertisements
PROBLEM:
A car engine moves a piston with a circular cross section of 7.500±0.002 cm diameter a distance of 3.250±0.001 cm to compress the gas in the cylinder.
(a) By what amount is the gas decreased in volume in cubic centimeters?
(b) Find the uncertainty in this volume.
Advertisements
Advertisements
SOLUTION:
Part A
The average volume is
\begin{align*} V & =\pi r^2h \\ & =\pi \left(\frac{7.5\:\text{cm}}{2}\right)^2\left(3.25\:\text{cm}\right) \\ & =143.5806\:\text{cm}^3 \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \\ \end{align*}
Part B
Solve for the percent uncertainties of each dimension
\begin{align*} \%\:unc_r & =\frac{0.002\:\text{cm}}{7.500\:\text{cm}}\times 100\%=0.027\% \\ \%\:unc_h & =\frac{0.001\:\text{cm}}{3.25\:\text{cm}}\times 100\%=0.031\% \\ \end{align*}
The percent uncertainty in the volume is the combined effect of the uncertainties of the dimensions
\text{\%\:unc}_{vol}=0.027\%+0.031\%=0.058\%
The uncertainty in the volume is
\delta _{vol}=\frac{0.058}{100}\times 143.5806=0.083\:\text{cm}^3 \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)
Advertisements
Advertisements