Differential and Integral Calculus by Feliciano and Uy, Exercise 1.1, Problem 2

Advertisements
Advertisements

PROBLEM:

If y=x2+3x\displaystyle y=\frac{x^2+3}{x}, find xx as a function of yy.


Advertisements
Advertisements

SOLUTION:

y=x2+3xxy=x2+3x2xy+3=0\begin{align*} y & = \frac{x^2+3}{x} \\ xy & =x^2+3 \\ x^2-xy+3&=0 \end{align*}

Solve for xx using the quadratic formula. We have a=1,b=y,andc=3 a=1,\:b=-y,\:\text{and}\:c=3

x=b±b24ac2ax=(y)±(y)24(1)(3)2(1)x=y±y2122  (Answer)\begin{align*} x & =\frac{-b\pm \sqrt{b^2-4ac}\:}{2a} \\ x & =\frac{ -\left(-y\right)\pm \sqrt{\left(-y\right)^2-4\left(1\right)\left(3\right)}}{2\left(1\right)} \\ x & =\frac{y\pm \sqrt{y^2-12}}{2} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

Advertisements
Advertisements