Differential and Integral Calculus by Feliciano and Uy, Exercise 1.1 Problem 3

Advertisements
Advertisements

PROBLEM:

If y=tan(x+π) \displaystyle y= \tan\left(x+\pi \right), find xx as a function of yy.


Advertisements
Advertisements

SOLUTION:

y=tan(x+π)x+π=tan1yx=tan1yπ  (Answer)\begin{align*} y & = \tan\left(x+\pi \right) \\ x+\pi & = \tan^{-1}y \\ x & = \tan^{-1}y-\pi \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)\\ \end{align*}

Advertisements
Advertisements