Differential and Integral Calculus by Feliciano and Uy, Exercise 1.1, Problem 10

Advertisements

PROBLEM:

If  f(x)=4x+3\displaystyle f\left(x\right)=\frac{4}{x+3} and g(x)=x23\displaystyle \:g\left(x\right)=x^2-3 , find f[g(x)]\displaystyle f\left[g\left(x\right)\right] and g[f(x)]\displaystyle g\left[f\left(x\right)\right].


Advertisements

SOLUTION:

Part A

f[g(x)]=4(x23)+3=4x2  (Answer)\begin{align*} f\left[g\left(x\right)\right] & =\frac{4}{\left(x^2-3\right)+3}\\ & =\frac{4}{x^2} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)\\ \end{align*}

Part B

g[f(x)]=(4x+3)23=16(x+3)23=163(x+3)2(x+3)2=163(x2+6x+9)(x+3)2=163x218x27(x+3)2=3x218x11(x+3)2  (Answer)\begin{align*} g\left[f\left(x\right)\right] & =\left(\frac{4}{x+3}\right)^2-3\\ & =\frac{16}{\left(x+3\right)^2}-3\\ & =\frac{16-3\left(x+3\right)^2}{\left(x+3\right)^2}\\ & =\frac{16-3\left(x^2+6x+9\right)}{\left(x+3\right)^2}\\ & =\frac{16-3x^2-18x-27}{\left(x+3\right)^2}\\ & =\frac{-3x^2-18x-11}{\left(x+3\right)^2} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)\\ \end{align*}

Advertisements
Advertisements