Advertisements
Advertisements
PROBLEM:
If \displaystyle f\left(x\right)=x^2+1, find \displaystyle \frac{f\left(x+h\right)-f\left(x\right)}{h},\:h\ne 0.
Advertisements
Advertisements
SOLUTION:
\begin{align*} \displaystyle \frac{f\left(x+h\right)-f\left(x\right)}{h} & =\frac{\left[\left(x+h\right)^2+1\right]-\left(x^2+1\right)\:}{h}\\ \\ & =\frac{x^2+2xh+h^2+1-x^2-1}{h}\\ \\ & =\frac{2xh+h^2}{h}\\ \\ & =\frac{h\left(2x+h\right)}{h}\\ \\ & =2x+h \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \\ \end{align*}
Advertisements
Advertisements