Differential and Integral Calculus by Feliciano and Uy, Exercise 1.1, Problem 8

Advertisements
Advertisements

PROBLEM:

If \displaystyle f\left(x\right)=x^2+1, find \displaystyle \frac{f\left(x+h\right)-f\left(x\right)}{h},\:h\ne 0.


Advertisements
Advertisements

SOLUTION:

\begin{align*}
\displaystyle \frac{f\left(x+h\right)-f\left(x\right)}{h} & =\frac{\left[\left(x+h\right)^2+1\right]-\left(x^2+1\right)\:}{h}\\ \\
& =\frac{x^2+2xh+h^2+1-x^2-1}{h}\\ \\
& =\frac{2xh+h^2}{h}\\ \\
& =\frac{h\left(2x+h\right)}{h}\\ \\
& =2x+h \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \\
\end{align*}

Advertisements
Advertisements