Differential and Integral Calculus by Feliciano and Uy, Exercise 1.1, Problem 9

Advertisements

PROBLEM:

If f(x)=3x24x+1\displaystyle f\left(x\right)=3x^2-4x+1, find f(h+3)f(3)h,h0\displaystyle \frac{f\left(h+3\right)-f\left(3\right)}{h},\:h\ne 0.


Advertisements

SOLUTION:

f(h+3)f(3)h=[3(h+3)24(h+3)+1][3(3)24(3)+1]h=3(h2+6h+9)4h12+116h=3h2+18h+274h12+116h=3h2+14hh=h(3h+14)h=3h+14  (Answer)\begin{align*} \frac{f\left(h+3\right)-f\left(3\right)}{h} & =\frac{\left[3\left(h+3\right)^2-4\left(h+3\right)+1\right]-\left[3\left(3\right)^2-4\left(3\right)+1\right]}{h} \\ & =\frac{3\left(h^2+6h+9\right)-4h-12+1-16}{h}\\ & =\frac{3h^2+18h+27-4h-12+1-16}{h}\\ & =\frac{3h^2+14h}{h}\\ & =\frac{h\left(3h+14\right)}{h}\\ & =3h+14 \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)\\ \end{align*}

Advertisements
Advertisements