Differential and Integral Calculus by Feliciano and Uy, Exercise 1.2, Problem 3

Advertisements

PROBLEM:

Evaluate limxπ4(tanx+sinx)\displaystyle \lim\limits_{x\to \frac{\pi }{4}}\left(\tan\:x+\sin\:x\right).


Advertisements

SOLUTION:

limxπ4(tanx+sinx)=limxπ4(tanx)+limxπ4(sinx)=tanπ4+sinπ4=1+22=2+22  (Answer)\begin{align*} \lim\limits_{x\to \frac{\pi }{4}}\left(\tan\:x+\sin\:x\right) & =\lim\limits_{x\to \frac{\pi }{4}}\left(\tan\:x\right)+\lim\limits_{x\to \frac{\pi }{4}}\left(\sin\:x\right)\\ & =\tan\:\frac{\pi }{4}+\sin\:\frac{\pi }{4}\\ & =1+\frac{\sqrt{2}}{2}\\ & =\frac{2+\sqrt{2}}{2} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)\\ \end{align*}

Advertisements
Advertisements