A woodpecker’s brain is specially protected from large decelerations by tendon-like attachments inside the skull. While pecking on a tree, the woodpecker’s head comes to a stop from an initial velocity of 0.600 m/s in a distance of only 2.00 mm.
a) Find the acceleration in m/s2 and in multiples of g (g=9.80 m/s2).
b) Calculate the stopping time.
c) The tendons cradling the brain stretch, making its stopping distance 4.50 mm (greater than the head and, hence, less deceleration of the brain). What is the brain’s deceleration, expressed in multiples of g?
Solution:
We are given the following values: v_0=0.600 \ \text{m/s}; v_f=0.000\:\text{m/s}; and \Delta x=0.002\:\text{m}.
Part A
The acceleration is computed based on the formula,
\left(v_f\right)^2=\left(v_0\right)^2+2a\Delta x
Solving for acceleration a in terms of the other variables, we have
a=\frac{\left(v_f\right)^2-\left(v_0\right)^2}{2\Delta x}
Substituting the given values,
\begin{align*} a & =\frac{\left(v_f\right)^2-\left(v_0\right)^2}{2\Delta x} \\ a & =\frac{\left(0.000\:\text{m/s}\right)^2-\left(0.600\:\text{m/s}\right)^2}{2\left(0.002\:\text{m}\right)} \\ a & =-90.0\:\text{m/s}^2 \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}
In terms of g taking absolute values of the acceleration , we have
\begin{align*} a & = 90.0 \ \text{m/s}^2 \cdot \left( \frac{g}{9.80 \ \text{m/s}^2} \right) \\ a & = \frac{90.0}{9.80}g \\ a & = 9.18g \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}
Part B
We shall use the formula
\Delta x=v_{ave}t
where v_{ave} is the average velocity computed as
v_{ave}=\frac{v_0+v_f}{2}
Solving for time t in terms of the other variables, we have
t=\frac{2\Delta x}{v_0+v_f}
Substituting the given values, we have
\begin{align*} t & =\frac{2\Delta x}{v_0+v_f} \\ t & =\frac{2\left(0.002\:\text{m}\right)}{0.600\:\text{m/s}+0.000\:\text{m/s}} \\ t & =6.67\times 10^{-3}\:\text{s} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}
Part C
Employing the same formula we used in Part A, we have
\begin{align*} a & =\frac{\left(v_f\right)^2-\left(v_0\right)^2}{2\Delta x} \\ a & =\frac{\left(0.000\:\text{m/s}\right)^2-\left(0.600\:\text{m/s}\right)^2}{2\left(0.0045\:\text{m}\right)} \\ a & =-40.0\:\text{m/s}^2 \end{align*}
In terms of g, taking absolute values of the acceleration
\begin{align*} a & = 40.0 \ \text{m/s}^2 \cdot \left( \frac{g}{9.80 \ \text{m/s}^2} \right) \\ a & =\frac{40.0}{9.80}g \\ a & = 4.08g \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}
Advertisements
Advertisements