Differential and Integral Calculus by Feliciano and Uy, Exercise 1.2, Problem 4 Advertisements PROBLEM: Evaluate limx→π3(sin 2xsin x)\displaystyle \lim\limits _{x\to \frac{\pi }{3}}\left(\frac{\sin\:2x}{\sin\:x}\right)x→3πlim(sinxsin2x). Advertisements SOLUTION: Plug in the value x=π3\displaystyle x=\frac{\pi }{3}x=3π. limx→π3(sin 2xsin x)=sin(2⋅π3)sin (π3)=3232=1 (Answer)\begin{align*} \lim\limits_{x\to \frac{\pi }{3}}\left(\frac{\sin\:2x}{\sin\:x}\right) & =\frac{\sin\left(2\cdot \frac{\pi }{3}\right)}{\sin\:\left(\frac{\pi }{3}\right)} \\ & =\frac{\frac{\sqrt{3}}{2}}{\frac{\sqrt{3}}{2}}\\ & =1 \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)\\ \end{align*}x→3πlim(sinxsin2x)=sin(3π)sin(2⋅3π)=2323=1 (Answer) Advertisements Advertisements