Differential and Integral Calculus by Feliciano and Uy: Limit of a Function, Exercise 1.2, Problem 6

Evaluate \lim\limits_{x\to 2}\left(4x-3\right)\left(x^2+5\right).

SOLUTION:

Plug in the value x=2.

\lim\limits_{x\to 2}\left(4x-3\right)\left(x^2+5\right)=\left[\left(4\cdot 2\right)-3\right]\left[\left(2\right)^2+5\right]

\lim\limits_{x\to 2}\left(4x-3\right)\left(x^2+5\right)=\left[8-3\right]\left[4+5\right]

\lim\limits_{x\to 2}\left(4x-3\right)\left(x^2+5\right)=\left(5\right)\left(9\right)

\lim\limits_{x\to 2}\left(4x-3\right)\left(x^2+5\right)=45

Advertisements