A bicycle racer sprints at the end of a race to clinch a victory. The racer has an initial velocity of 11.5 m/s and accelerates at the rate of 0.500 m/s2 for 7.00 s.
(a) What is his final velocity?
(b) The racer continues at this velocity to the finish line. If he was 300 m from the finish line when he started to accelerate, how much time did he save?
(c) One other racer was 5.00 m ahead when the winner started to accelerate, but he was unable to accelerate, and traveled at 11.8 m/s until the finish line. How far ahead of him (in meters and in seconds) did the winner finish?
Solution:
We are given the following: v_0=11.5 \ \text{m/s} ; a=0.500 \ \text{m/s}^2; and \Delta t=7.00 \ \text{s}.
Part A
To solve for the final velocity, we are going to use the formula
v_f=v_0+at
Substituting the given values:
\begin{align*} v_f &=v_0+at\\ v_f&=11.5\ \text{m/s}+\left( 0.500\ \text{m/s}^2 \right)\left( 7.00\ \text{s} \right)\\ v_f&=15.0\ \text{m/s} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}
Part B
Let t_{const} be the time it takes to reach the finish line without accelerating:
\begin{align*} t_{const}&=\frac{x}{v_0}\\ t_{const}&=\frac{300\ \text{m}}{11.5\ \text{m/s}}\\ t_{const}&=26.1\ \text{m/s} \end{align*}
Now let d be the distance traveled during the 7 seconds of acceleration. We know t=7.00 \ \text{s} so
\begin{align*} d&=v_0t+\frac{1}{2}at^2\\ d&=\left( 11.5\ \text{m/s} \right)\left( 7.00\ \text{s} \right)+\frac{1}{2}\left( 0.500\ \text{m/s} ^2\right)\left( 7.00\ \text{s} \right)^2\\ d&=92.8\ \text{m} \end{align*}
Let t' be the time it will take the rider at the constant final velocity to complete the race:
\begin{align*} t'&=\frac{x-d}{v}\\ t'&=\frac{300\ \text{m}-92.8\ \text{m}}{15.0\ \text{m/s}}\\ t'&=13.8\ \text{s} \end{align*}
So the total time T it will take the accelerating rider to reach the finish line is
\begin{align*} T&=t+t'\\ T&=7.00\ \text{s}+13.8\ \text{s}\\ T&=20.8\ \text{s} \end{align*}
Finally, let T^{*} be the time saved. So
\begin{align*} T^{*}&=26.1\ \text{s}-20.8\ \text{s}\\ T^{*}&={\color{DarkGreen} 5.3\ \text{s}} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}
Part C
For rider 2, we are given the following values: \Delta x'=295 \ \text{m} ; v'=11.8 \ \text{m/s}
Let t_2 be the time it takes for rider 2 to reach the finish line.
We are going to use the formula
t_2=\frac{\Delta x'}{v'}
Substituting the given values:
\begin{align*} t_2 & =\frac{x'}{v'} \\ t_2 & =\frac{295\:\text{m}}{11.8\:\text{m/s}} \\ t_2 & =25.0\:\text{s} \end{align*}
The time difference is
\begin{align*} \text{time difference} & =t_2-T \\ \text{time difference} & =25.0\:\text{s}-20.817\:\text{s} \\ \text{time difference} & =4.2\:\text{s} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}
Therefore, he finishes 4.2 s after the winner.
When the other racer reaches the finish line, he has been traveling at 11.8 m/s for 4.2 seconds, so the other racer finishes
\begin{align*} \Delta x & =\left(11.8\:\text{m/s}\right)\left(4.2\:\text{s}\right) \\ \Delta x & =49.56\:\text{m} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}
behind the other racer.