Advertisements
PROBLEM:
Evaluate \displaystyle \lim\limits_{x\to 3}\left(\frac{x^3-13x+12}{x^3-14x+15}\right).
Advertisements
SOLUTION:
A straight substitution of x=3 leads to the indeterminate form \frac{0}{0} which is meaningless.
Therefore, to evaluate the limit of the given function, we proceed as follows.
\begin{align*} \lim\limits_{x\to 3}\left(\frac{x^3-13x+12}{x^3-14x+15}\right)& =\lim\limits_{x\to 3}\left(\frac{\left(x-3\right)\left(x^2+3x-4\right)}{\left(x-3\right)\left(x^2+3x-5\right)}\right)\\ \\ & =\lim\limits_{x\to 3}\left(\frac{x^2+3x-4}{x^2+3x-5}\right)\\ \\ &=\frac{\left(3\right)^2+3\left(3\right)-4}{\left(3\right)^2+3\left(3\right)-5}\\ \\ & =\frac{9+9-4}{9+9-5}\\ \\ & =\frac{14}{13} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)\\ \\ \end{align*}
Advertisements
Advertisements