Differential and Integral Calculus by Feliciano and Uy, Exercise 1.3, Problem 4

Advertisements

PROBLEM:

Evaluate limx2(x3x2x22x35x2+5x6) \displaystyle \lim\limits_{x\to 2}\left(\frac{x^3-x^2-x-2}{2x^3-5x^2+5x-6}\right).


Advertisements

 SOLUTION:

A straight substitution of x=2x=2 leads to the indeterminate form 00\frac{0}{0} which is meaningless.

Therefore, to evaluate the limit of the given function, we proceed as follows

limx2(x3x2x22x35x2+5x6)=limx2((x2)(x2+x+1)(x2)(2x2x+3))=limx2(x2+x+12x2x+3)=22+2+12(2)22+3=4+2+182+3=79  (Answer)\begin{align*} \lim\limits_{x\to 2}\left(\frac{x^3-x^2-x-2}{2x^3-5x^2+5x-6}\right)&=\lim\limits_{x\to 2}\left(\frac{\left(x-2\right)\left(x^2+x+1\right)}{\left(x-2\right)\left(2x^2-x+3\right)}\right)\\ \\ & =\lim\limits_{x\to 2}\left(\frac{x^2+x+1}{2x^2-x+3}\right)\\ \\ & =\frac{2^2+2+1}{2\left(2\right)^2-2+3}\\ \\ & =\frac{4+2+1}{8-2+3}\\ \\ & =\frac{7}{9} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)\\ \\ \end{align*}

Advertisements
Advertisements