Advertisements
PROBLEM:
Evaluate \displaystyle \lim\limits_{x\to 2}\left(\frac{x^3-x^2-x-2}{2x^3-5x^2+5x-6}\right).
Advertisements
SOLUTION:
A straight substitution of x=2 leads to the indeterminate form \frac{0}{0} which is meaningless.
Therefore, to evaluate the limit of the given function, we proceed as follows
\begin{align*} \lim\limits_{x\to 2}\left(\frac{x^3-x^2-x-2}{2x^3-5x^2+5x-6}\right)&=\lim\limits_{x\to 2}\left(\frac{\left(x-2\right)\left(x^2+x+1\right)}{\left(x-2\right)\left(2x^2-x+3\right)}\right)\\ \\ & =\lim\limits_{x\to 2}\left(\frac{x^2+x+1}{2x^2-x+3}\right)\\ \\ & =\frac{2^2+2+1}{2\left(2\right)^2-2+3}\\ \\ & =\frac{4+2+1}{8-2+3}\\ \\ & =\frac{7}{9} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)\\ \\ \end{align*}
Advertisements
Advertisements