Differential and Integral Calculus by Feliciano and Uy, Exercise 1.3, Problem 5

Advertisements

PROBLEM:

Evaluate limx0(x+3)292x\displaystyle \lim\limits_{x\to 0}\:\frac{\left(x+3\right)^2-9}{2x}.


Advertisements

 SOLUTION:

A straight substitution of x=0x=0 leads to the indeterminate form 00\frac{0}{0} which is meaningless.

Therefore, to evaluate the limit of the given function, we proceed as follows

limx0(x+3)292x=limx0(x+3)2(3)22x=limx0(x+33)(x+3+3)2x=limx0x(x+6)2x=limx0x+62=0+62=62=3  (Answer)\begin{align*} \lim\limits_{x\to 0}\:\frac{\left(x+3\right)^2-9}{2x} & =\:\lim\limits_{x\to 0}\:\frac{\left(x+3\right)^2-\left(3\right)^2}{2x}\\ \\ & =\:\lim\limits_{x\to 0}\:\frac{\left(x+3-3\right)\left(x+3+3\right)}{2x}\\ \\ & =\lim\limits_{x\to 0}\:\frac{x\left(x+6\right)}{2x}\\ \\ & =\lim\limits_{x\to 0}\:\frac{x+6}{2}\\ \\ & =\frac{0+6}{2}\\ \\ & =\frac{6}{2}\\ \\ & =3 \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)\\ \end{align*}

Advertisements
Advertisements