Advertisements
PROBLEM:
Evaluate \displaystyle \lim\limits_{x\to 0}\:\frac{\left(x+3\right)^2-9}{2x}.
Advertisements
A straight substitution of x=0 leads to the indeterminate form \frac{0}{0} which is meaningless.
Therefore, to evaluate the limit of the given function, we proceed as follows
\begin{align*} \lim\limits_{x\to 0}\:\frac{\left(x+3\right)^2-9}{2x} & =\:\lim\limits_{x\to 0}\:\frac{\left(x+3\right)^2-\left(3\right)^2}{2x}\\ \\ & =\:\lim\limits_{x\to 0}\:\frac{\left(x+3-3\right)\left(x+3+3\right)}{2x}\\ \\ & =\lim\limits_{x\to 0}\:\frac{x\left(x+6\right)}{2x}\\ \\ & =\lim\limits_{x\to 0}\:\frac{x+6}{2}\\ \\ & =\frac{0+6}{2}\\ \\ & =\frac{6}{2}\\ \\ & =3 \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)\\ \end{align*}
Advertisements
Advertisements