Differential and Integral Calculus by Feliciano and Uy, Exercise 1.3, Problem 6

Advertisements

PROBLEM:

Evaluate limx0x+164x \displaystyle\lim\limits_{x\to 0}\:\frac{\sqrt{x+16}-4}{x}.


Advertisements

 SOLUTION:

A straight substitution of x=0x=0 leads to the indeterminate form 00 \frac{0}{0} which is meaningless.

Therefore, to evaluate the limit of the given function, we proceed as follows.

limx0x+164x=limx0x+164xx+16+4x+16+4=limx0(x+16)42x(x+16+4)=limx0x+1616x(x+16+4)=limx0xx(x+16+4)=limx01x+16+4=10+16+4=14+4=18  (Answer)\begin{align*} \\ \lim\limits_{x\to 0}\:\frac{\sqrt{x+16}-4}{x} & =\lim\limits_{x\to 0}\:\frac{\sqrt{x+16}-4}{x}\cdot \frac{\sqrt{x+16}+4}{\sqrt{x+16}+4}\\ \\ & =\lim\limits_{x\to 0}\:\frac{\left(x+16\right)-4^2}{x\left(\sqrt{x+16}+4\right)}\\ \\ & =\lim\limits_{x\to 0}\:\frac{x+16-16}{x\left(\sqrt{x+16}+4\right)}\\ \\ & =\lim\limits_{x\to 0}\:\frac{x}{x\left(\sqrt{x+16}+4\right)}\\ \\ & =\lim\limits_{x\to 0}\:\frac{1}{\sqrt{x+16}+4}\\ \\ & =\:\frac{1}{\sqrt{0+16}+4}\\ \\ & =\:\frac{1}{4+4}\\ \\ & =\:\frac{1}{8} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)\\ \\ \end{align*}

 

Advertisements
Advertisements