Differential and Integral Calculus by Feliciano and Uy, Exercise 1.3, Problem 8

Advertisements

PROBLEM:

Evaluate limx8x32x8\displaystyle \lim\limits_{x\to 8}\:\frac{\sqrt[3]{x}-2}{x-8}.


Advertisements

SOLUTION:

A straight substitution of x=8x=8 leads to the indeterminate form 00\frac{0}{0} which is meaningless.

Therefore, to evaluate the limit of the given function, we proceed as follows

limx8x32x8=limx8x32x8x23+2x3+4x23+2x3+4=limx8x8(x8)(x23+2x3+4)=limx81(x23+2x3+4)=1(823+283+4)=14+4+4=112  (Answer)\begin{align*} \\ \lim\limits_{x\to 8}\:\frac{\sqrt[3]{x}-2}{x-8}& =\lim\limits_{x\to \:8}\:\frac{\sqrt[3]{x}-2}{x-8}\cdot \frac{\sqrt[3]{x^2}+2\sqrt[3]{x}+4}{\sqrt[3]{x^2}+2\sqrt[3]{x}+4}\\ \\ & =\lim\limits_{x\to 8}\:\frac{x-8}{\left(x-8\right)\left(\sqrt[3]{x^2}+2\sqrt[3]{x}+4\right)}\\ \\ & =\lim\limits_{x\to 8}\:\frac{1}{\left(\sqrt[3]{x^2}+2\sqrt[3]{x}+4\right)}\\ \\ & =\frac{1}{\left(\sqrt[3]{8^2}+2\sqrt[3]{8}+4\right)}\\ \\ & =\frac{1}{4+4+4}\\ \\ & =\frac{1}{12} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)\\ \\ \end{align*}

Advertisements
Advertisements