(a) Calculate the height of a cliff if it takes 2.35 s for a rock to hit the ground when it is thrown straight up from the cliff with an initial velocity of 8.00 m/s.
(b) How long would it take to reach the ground if it is thrown straight down with the same speed?
Solution:
Part A
Refer to the figure below.
The known values are: t=2.35\:\text{s}; y=0\:\text{m}; v_0=+8.00\:\text{m/s}; and a=-9.8\:\text{m/s}^2
Based on the given values, the formula that we shall use is
y=y_0+v_0t+\frac{1}{2}at^2
Substituting the values, we have
\begin{align*} y & =y_0+v_0t+\frac{1}{2}at^2 \\ 0\: & =y_0+\left(8.00\:\text{m/s}\right)\left(2.35\:\text{s}\right)+\frac{1}{2}\left(-9.80\:\text{m/s}^2\right)\left(2.35\:\text{s}\right)^2 \\ y_0 & =8.26\:\text{m} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)\\ \end{align*}
Therefore, the cliff is 8.26 meters high.
Part B
Refer to the figure below
The knowns now are: y=0\:\text{m}; y_0=8.26\:\text{m}; v_0=-8.00\:\text{m/s}; and a=-9.80\:\text{m/s}^2
Based on the given values, we can use the formula
y=y_0+v_0t+\frac{1}{2}at^2
Substituting the values, we have
\begin{align*} y & =y_0+v_0t+\frac{1}{2}at^2 \\ 0\:\text{m} & =8.26\:\text{m}+\left(-8.00\:\text{m/s}\right)t+\frac{1}{2}\left(-9.80\:\text{m/s}^2\right)t^2 \\ 4.9 t^2+8t-8.26 & =0 \\ \end{align*}
Using the quadratic formula to solve for the value of t, we have
\begin{align*} t &=\frac{-8\pm \sqrt{\left(8\right)^2-4\left(4.9\right)\left(-8.26\right)}}{2\left(4.9\right)} \\ t &=0.717\:\text{s} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}
Advertisements
Advertisements