Evaluate x→3lim(x−2−4−xx−3)
Solution:
A straight substitution of x=3 leads to the indeterminate form 00 which is meaningless.
Therefore, to evaluate the limit of the given function, we proceed as follows.
x→3lim(x−2−4−xx−3)=x→3lim(x−2−4−xx−3)⋅x−2+4−xx−2+4−x=x→3lim[(x−2−4−x)(x−2+4−x)(x−3)(x−2+4−x)]=x→3lim[2x−6(x−3)(x−2+4−x)]=x→3lim[2(x−3)(x−3)(x−2+−x+4)]=x→3lim[2x−2+4−x]=23−2+4−3=1 (Answer)