PROBLEM:
Evaluate x→0lim(x1(31−x+91))
SOLUTION:
A straight substitution of x=0 leads to the indeterminate form 0⋅0 which is meaningless.
Therefore, to evaluate the limit of the given function, we proceed as follows
x→0lim(x1(31−x+91))=x→0lim⎝⎛x1⋅(31−x+91)⎠⎞=x→0lim⎝⎛x3x+9x+9−3⎠⎞=x→0lim(3xx+9x+9−3)=x→0lim(3xx+9x+9−3)⋅x+9+3x+9+3=x→0lim(3x(x+9+3)x+9x)=x→0lim(3(x+9+3)x+91)=3(0+9+3)0+91=541 (Answer)