PROBLEM:
Evaluate x→0lim(sinx−tanxsin3x).
SOLUTION:
A straight substitution of x=4π leads to the indeterminate form 00 which is meaningless.
Therefore, to evaluate the limit of the given function, we proceed as follows
x→0lim(sinx−tanxsin3x)=x→0lim(sinx−cosxsinxsin3x)=x→0lim(cosxsinxcosx−sinxsin3x)=x→0lim(sinxcosx−sinxsin3xcosx)=x→0lim((sinx)(cosx−1)sin3xcosx)=x→0lim((cosx−1)sin2xcosx)=x→0lim(−(1−cosx)(1−cos2x)⋅cosx)=x→0lim(−(1−cosx)(1+cosx)(1−cosx)⋅cosx)=x→0lim(−1(1+cosx)⋅cos(x))=−1⋅x→0lim((1+cosx)⋅cosx)=−1⋅(1+cos0)⋅cos0=−1⋅(1+1)⋅1=−2 (Answer)