Differential and Integral Calculus by Feliciano and Uy, Exercise 1.3, Problem 17

Advertisements

PROBLEM:

Evaluate limx0(sin(x)sin(2x)1cos(x)).\displaystyle \lim\limits_{x\to 0}\left(\displaystyle \frac{\sin\left(x\right)\sin\left(2x\right)}{1-\cos\left(x\right)}\right).


Advertisements

SOLUTION:

Direct substitution of x=0x=0 gives the indeterminate form 00\frac{0}{0}. Therefore, we should apply trigonometric identities.

We know that sin(2x)=2sin(x)cos(x)\sin\left(2x\right)=2\sin\left(x\right)\cos\left(x\right), so we can rewrite the original function as

limx0(sin(x)sin(2x)1cos(x))=limx0(sin(x)2(sin(x)cos(x))1cos(x))=2limx0(sin2(x)cos(x)1cos(x))\begin{align*} \displaystyle \lim\limits_{x\to 0}\left(\displaystyle \frac{\sin\left(x\right)\sin\left(2x\right)}{1-\cos\left(x\right)}\right) & =\lim\limits_{x\to 0}\left(\frac{\sin\left(x\right)\cdot 2\left(\sin\left(x\right) \cos\left(x\right)\right)}{1-\cos\left(x\right)}\right)\\ \\ & =\displaystyle 2\cdot \lim\limits_{x\to 0}\left(\frac{\sin^2\left(x\right)\cos\left(x\right)}{1-\cos\left(x\right)}\right)\\ \end{align*}

We also know the Pythagorean identity sin2(x)=1cos2(x)\sin^2\left(x\right)=1-\cos^2\left(x\right). So,

limx0(sin(x)sin(2x)1cos(x))=2limx0((1cos2(x))cos(x)1cos(x))=2limx0((1+cos(x))(1cos(x))cos(x)1cos(x))=2limx0((1+cos(x))cos(x))=2((1+cos(0))cos(0))=2((1+1)1)=4  (Answer)\begin{align*} \displaystyle \lim\limits_{x\to 0}\left(\displaystyle \frac{\sin\left(x\right)\sin\left(2x\right)}{1-\cos\left(x\right)}\right) & =2\cdot \lim\limits_{x\to 0}\left(\frac{\left(1-\cos^2\left(x\right)\right)\cos\left(x\right)}{1-\cos\left(x\right)}\right)\\ \\ & =2\cdot \lim\limits_{x\to 0}\left(\frac{\left(1+\cos\left(x\right)\right)\left(1-\cos\left(x\right)\right)\cos\left(x\right)}{1-\cos\left(x\right)}\right) \\ \\ & =2\cdot \lim\limits_{x\to 0}\left(\left(1+\cos\left(x\right)\right)\cos\left(x\right)\right) \\ \\ & = 2\cdot \left(\left(1+\cos\left(0\right)\right)\cos\left(0\right)\right) \\ \\ & =2\cdot \left(\left(1+1\right)\cdot 1\right) \\ \\ & =4 \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

Advertisements
Advertisements