PROBLEM:
Evaluate x→πlim(1+cos(x)sin2(x)).
SOLUTION:
Direct substitution of x=π gives the indeterminate form 00. Therefore, we should apply trigonometric identities.
We know the Pythagorean identity, sin2(x)=1−cos2(x). Therefore, we have
x→πlim(1+cos(x)sin2(x))=x→πlim(1+cos(x)1−cos2(x))=x→πlim(1+cos(x)(1+cos(x))(1−cos(x)))=x→πlim(1−cos(x))=(1−cos(π))=(1−(−1))=2 (Answer)