Advertisements
PROBLEM:
Evaluate \displaystyle \lim\limits_{x\to \pi }\left(\frac{\sin^2\left(x\right)}{1+\cos\left(x\right)}\right).
Advertisements
Direct substitution of x=\pi gives the indeterminate form \frac{0}{0}. Therefore, we should apply trigonometric identities.
We know the Pythagorean identity, \sin^2\left(x\right)=1-\cos^2\left(x\right). Therefore, we have
\begin{align*} \displaystyle \lim\limits_{x\to \pi }\left(\displaystyle \frac{\sin^2\left(x\right)}{1+\cos\left(x\right)}\right) & = \displaystyle \lim\limits_{x\to \pi }\left(\displaystyle \frac{1-\cos^2\left(x\right)}{1+\cos\left(x\right)}\right) \\ \\ & = \displaystyle \lim\limits_{x\to \pi }\left(\displaystyle \frac{\left(1+\cos\left(x\right)\right)\left(1-\cos\left(x\right)\right)}{1+\cos\left(x\right)}\right)\\ \\ & =\lim\limits_{x\to \pi }\left(1-\cos\left(x\right)\right)\\ \\ & =\left(1-\cos\left(\pi \right)\right)\\ \\ & =\left(1-\left(-1\right)\right)\\ \\ & =2 \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}
Advertisements
Advertisements