Differential and Integral Calculus by Feliciano and Uy, Exercise 1.3, Problem 19

Advertisements

PROBLEM:

If f(x)=xf\left(x\right)=\sqrt{x}, find limx4(f(x)f(4)x4)\displaystyle \lim\limits_{x\to 4}\left(\frac{f\left(x\right)-f\left(4\right)}{x-4}\right)


Advertisements

SOLUTION:

limx4(f(x)f(4)x4)=limx4(x4x4)\displaystyle \lim\limits_{x\to 4}\left(\displaystyle \frac{f\left(x\right)-f\left(4\right)}{x-4}\right)=\lim\limits_{x\to 4}\left(\displaystyle \frac{\sqrt{x}-\sqrt{4}}{x-4}\right)

Direct substitution of x=4x=4 gives the indeterminate form 00\frac{0}{0}. Therefore, we proceed by rationalizing the numerator.

=limx4(x2x4)x+2x+2=limx4(x4(x4)(x+2))=limx4(1x+2)=(14+2)=14  (Answer)\begin{align*} & =\lim\limits_{x\to 4}\left(\displaystyle \frac{\sqrt{x}-2}{x-4}\right)\cdot \displaystyle \frac{\sqrt{x}+2}{\sqrt{x}+2} \\ \\ & =\lim\limits_{x\to 4}\left(\displaystyle \frac{x-4}{\left(x-4\right)\left(\sqrt{x}+2\right)}\right) \\ \\ & =\lim\limits_{x\to 4}\left(\displaystyle \frac{1}{\sqrt{x}+2}\right) \\ \\ & =\left(\displaystyle \frac{1}{\sqrt{4}+2}\right) \\ \\ & =\displaystyle \frac{1}{4} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

Advertisements
Advertisements