Differential and Integral Calculus by Feliciano and Uy, Exercise 1.3, Problem 19

Advertisements

PROBLEM:

If f\left(x\right)=\sqrt{x}, find \displaystyle \lim\limits_{x\to 4}\left(\frac{f\left(x\right)-f\left(4\right)}{x-4}\right)


Advertisements

SOLUTION:

\displaystyle \lim\limits_{x\to 4}\left(\displaystyle \frac{f\left(x\right)-f\left(4\right)}{x-4}\right)=\lim\limits_{x\to 4}\left(\displaystyle \frac{\sqrt{x}-\sqrt{4}}{x-4}\right)

Direct substitution of x=4 gives the indeterminate form \frac{0}{0}. Therefore, we proceed by rationalizing the numerator.

\begin{align*}
& =\lim\limits_{x\to 4}\left(\displaystyle \frac{\sqrt{x}-2}{x-4}\right)\cdot \displaystyle \frac{\sqrt{x}+2}{\sqrt{x}+2} \\
\\
& =\lim\limits_{x\to 4}\left(\displaystyle \frac{x-4}{\left(x-4\right)\left(\sqrt{x}+2\right)}\right) \\
\\
& =\lim\limits_{x\to 4}\left(\displaystyle \frac{1}{\sqrt{x}+2}\right) \\
\\
& =\left(\displaystyle \frac{1}{\sqrt{4}+2}\right) \\
\\
& =\displaystyle \frac{1}{4} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)
\end{align*}

Advertisements
Advertisements