PROBLEM:
If f(x)=x, find x→0lim(xf(9+x)−f(9)).
SOLUTION:
x→0lim(xf(9+x)−f(9))=x→0lim(x9+x−9)
Direct substitution of x=0 gives the indeterminate form 00. Therefore, we proceed by rationalizing the numerator.
=x→0lim(x9+x−3⋅9+x+39+x+3)=x→0lim(x(9+x+3)9+x−9)=x→0lim(x(9+x+3)x)=x→0lim((9+x+3)1)=((9+0+3)1)=61 (Answer)