PROBLEM:
If f(x)=x2−2x+3, find x→2lim(x−2f(x)−f(2)).
SOLUTION:
x→2lim(x−2f(x)−f(2))=x→2lim(x−2(x2−2x+3)−(22−2⋅2+3))=x→2lim(x−2(x2−2x+3)−3)=x→2lim(x−2x2−2x)
Direct substitution of x=2 gives the indeterminate form 00. Therefore, we proceed by factoring the numerator.
=x→2lim(x−2x(x−2))=x→2lim(x)=2 (Answer)