Differential and Integral Calculus by Feliciano and Uy, Exercise 1.3, Problem 21

Advertisements

PROBLEM:

If f(x)=x22x+3\displaystyle f\left(x\right)=x^2-2x+3, find limx2(f(x)f(2)x2)\displaystyle \lim\limits_{x\to 2}\left(\frac{f\left(x\right)-f\left(2\right)}{x-2}\right).


Advertisements

SOLUTION:

limx2(f(x)f(2)x2)=limx2((x22x+3)(2222+3)x2)=limx2((x22x+3)3x2)=limx2(x22xx2)\begin{align*} \displaystyle \lim\limits_{x\to 2}\left(\displaystyle \frac{f\left(x\right)-f\left(2\right)}{x-2}\right) & =\lim\limits_{x\to 2}\left(\displaystyle \frac{\left(x^2-2x+3\right)-\left(2^2-2\cdot 2+3\right)}{x-2}\right) \\ \\ & =\lim\limits_{x\to 2}\left(\displaystyle \frac{\left(x^2-2x+3\right)-3}{x-2}\right)\\ \\ & =\lim\limits_{x\to 2}\left(\displaystyle \frac{x^2-2x}{x-2}\right)\\ \\ \end{align*}

Direct substitution of x=2x=2 gives the indeterminate form 00\frac{0}{0}. Therefore, we proceed by factoring the numerator.

=limx2(x(x2)x2)=limx2(x)=2  (Answer)\begin{align*} & =\lim\limits_{x\to 2}\left(\displaystyle \frac{x\left(x-2\right)}{x-2}\right) \\ \\ & =\lim\limits_{x\to 2}\left(x\right) \\ \\ & =2 \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

Advertisements
Advertisements