PROBLEM:
If f(x)=x2−2x+3, find x→0lim(xf(x+2)−f(2)).
SOLUTION:
x→0lim(xf(x+2)−f(2))=x→0lim⎝⎛x((x+2)2−2(x+2)+3)−(22−2⋅2+3)⎠⎞=x→0lim⎝⎛x((x+2)2−2(x+2)+3)−(3)⎠⎞=x→0lim⎝⎛x((x+2)2−2(x+2))⎠⎞
Direct substitution of x=0 gives the indeterminate form 00. Therefore, we proceed by factoring the numerator.
=x→0limx(x+2)(x+2−2)=x→0limx(x+2)(x)=x→0lim(x+2)=0+2=2 (Answer)