Differential and Integral Calculus by Feliciano and Uy, Exercise 1.3, Problem 22

Advertisements

PROBLEM:

If f(x)=x22x+3 \displaystyle f\left(x\right)=x^2-2x+3, find limx0(f(x+2)f(2)x)\displaystyle \lim\limits_{x\to 0}\left(\displaystyle \frac{f\left(x+2\right)-f\left(2\right)}{x}\right).


Advertisements

SOLUTION:

limx0(f(x+2)f(2)x)=limx0(((x+2)22(x+2)+3)(2222+3)x)=limx0(((x+2)22(x+2)+3)(3)x)=limx0(((x+2)22(x+2))x)\begin{align*} \displaystyle \lim\limits_{x\to 0}\left(\displaystyle \frac{f\left(x+2\right)-f\left(2\right)}{x}\right)&=\displaystyle \lim\limits_{x\to 0}\left(\displaystyle \frac{\left(\left(x+2\right)^2-2\left(x+2\right)+3\right)-\left(2^2-2\cdot 2+3\right)}{x}\right)\\ \\ & =\displaystyle \lim\limits_{x\to 0}\left(\displaystyle \frac{\left(\left(x+2\right)^2-2\left(x+2\right)+3\right)-\left(3\right)}{x}\right)\\ \\ &=\displaystyle \lim\limits_{x\to 0}\left(\displaystyle \frac{\left(\left(x+2\right)^2-2\left(x+2\right)\right)}{x}\right)\\ \\ \end{align*}

Direct substitution of x=0x=0 gives the indeterminate form 00\frac{0}{0}. Therefore, we proceed by factoring the numerator.

=limx0(x+2)(x+22)x=limx0(x+2)(x)x=limx0(x+2)=0+2=2  (Answer)\begin{align*} & =\displaystyle \lim\limits_{x\to 0}\displaystyle \frac{\left(x+2\right)\left(x+2-2\right)}{x}\\ \\ & =\lim\limits_{x\to 0}\frac{\left(x+2\right)\left(x\right)}{x} \\ \\ & =\lim\limits_{x\to 0}\left(x+2\right) \\ \\ & =0+2 \\ \\ & =2 \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

Advertisements
Advertisements