Differential and Integral Calculus by Feliciano and Uy, Exercise 1.4, Problem 1

Advertisements

PROBLEM:

Evaluate \displaystyle \lim\limits_{x\to \infty }\left( \frac{6x^3+4x^2+5}{8x^3+7x-3}\right)


Advertisements

Solution:

Divide by the highest denominator power.

\begin{align*}
\displaystyle \lim\limits_{x\to \infty }\left(\frac{6x^3+4x^2+5}{8x^3+7x-3}\right)&=\displaystyle \lim\limits_{x\to \infty }\left(\frac{6x^3+4x^2+5}{8x^3+7x-3}\cdot \displaystyle \frac{\displaystyle \frac{1}{x^3}}{\displaystyle \frac{1}{x^3}}\right) \\
\\
& =\displaystyle \lim\limits_{x\to \infty \:}\left(\displaystyle \frac{6+\displaystyle \frac{4}{x}+\displaystyle \frac{5}{x^3}}{8+\displaystyle \frac{7}{x^2}-\frac{3}{x^3}}\right)\\
\\
& =\displaystyle \frac{\lim\limits_{x\to \infty \:}\left(6+\displaystyle \frac{4}{x}+\frac{5}{x^3}\right)}{\lim\limits_{x\to \infty \:}\left(8+\displaystyle\frac{7}{x^2}-\displaystyle \frac{3}{x^3}\right)}\\
\\
& =\displaystyle \frac{6+0+0}{8+0-0}\\
\\
& =\displaystyle \frac{6}{8}\\
\\
& =\displaystyle \frac{3}{4} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)
\end{align*}

Advertisements
Advertisements