Differential and Integral Calculus by Feliciano and Uy, Exercise 1.4, Problem 1

Advertisements

PROBLEM:

Evaluate limx(6x3+4x2+58x3+7x3) \displaystyle \lim\limits_{x\to \infty }\left( \frac{6x^3+4x^2+5}{8x^3+7x-3}\right)


Advertisements

Solution:

Divide by the highest denominator power.

limx(6x3+4x2+58x3+7x3)=limx(6x3+4x2+58x3+7x31x31x3)=limx(6+4x+5x38+7x23x3)=limx(6+4x+5x3)limx(8+7x23x3)=6+0+08+00=68=34  (Answer)\begin{align*} \displaystyle \lim\limits_{x\to \infty }\left(\frac{6x^3+4x^2+5}{8x^3+7x-3}\right)&=\displaystyle \lim\limits_{x\to \infty }\left(\frac{6x^3+4x^2+5}{8x^3+7x-3}\cdot \displaystyle \frac{\displaystyle \frac{1}{x^3}}{\displaystyle \frac{1}{x^3}}\right) \\ \\ & =\displaystyle \lim\limits_{x\to \infty \:}\left(\displaystyle \frac{6+\displaystyle \frac{4}{x}+\displaystyle \frac{5}{x^3}}{8+\displaystyle \frac{7}{x^2}-\frac{3}{x^3}}\right)\\ \\ & =\displaystyle \frac{\lim\limits_{x\to \infty \:}\left(6+\displaystyle \frac{4}{x}+\frac{5}{x^3}\right)}{\lim\limits_{x\to \infty \:}\left(8+\displaystyle\frac{7}{x^2}-\displaystyle \frac{3}{x^3}\right)}\\ \\ & =\displaystyle \frac{6+0+0}{8+0-0}\\ \\ & =\displaystyle \frac{6}{8}\\ \\ & =\displaystyle \frac{3}{4} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

Advertisements
Advertisements