Differential and Integral Calculus by Feliciano and Uy, Exercise 1.4, Problem 2

Advertisements

PROBLEM:

Evaluate \displaystyle \lim\limits_{x\to \infty }\left(\frac{3x^2+x+2}{x^3+8x+1}\right)


Advertisements

Solution:

Divide by the highest denominator power.

\begin{align*}

\displaystyle \lim\limits_{x\to \infty }\left(\frac{3x^2+x+2}{x^3+8x+1}\right) & =\displaystyle \lim\limits_{x\to \infty }\left(\frac{3x^2+x+2}{x^3+8x+1}\cdot \frac{\displaystyle \frac{1}{x^3}}{\displaystyle \frac{1}{x^3}}\right)\\
\\
&=\lim\limits_{x\to \infty }\left(\displaystyle \frac{\displaystyle \frac{3x^2}{x^3}+\displaystyle \frac{x}{x^3}+\displaystyle \frac{2}{x^3}}{\displaystyle \frac{x^3}{x^3}+\frac{8x}{x^3}+\frac{1}{x^3}}\right)\\
\\
& =\lim\limits_{x\to \infty }\left(\displaystyle \frac{\displaystyle \frac{3}{x}+\frac{1}{x^2}+\displaystyle \frac{2}{x^3}}{1+\displaystyle \frac{8}{x^2}+\frac{1}{x^3}}\right)\\
\\
&=\frac{0+0+0}{1+0+0} \\
\\
&=0\ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)
\end{align*}

Advertisements
Advertisements