Differential and Integral Calculus by Feliciano and Uy, Exercise 1.4, Problem 4

Advertisements

PROBLEM:

Evaluate limx(x3+x+2x21)\displaystyle \lim\limits_{x\to \infty }\left(\frac{x^3+x+2}{x^2-1}\right)


Advertisements

Solution:

Divide by the highest denominator power

limx(x3+x+2x21)=limx(x3+x+2x211x31x3)=limx(x3x3+xx3+2x3x2x31x3)=limx(1+1x2+2x31x1x3)=1+0+000=  (Answer)\begin{align*} \lim\limits_{x\to \infty }\left(\displaystyle \frac{x^3+x+2}{x^2-1}\right) & =\lim\limits_{x\to \infty }\left(\displaystyle \frac{x^3+x+2}{x^2-1}\cdot \displaystyle \frac{\displaystyle \frac{1}{x^3}}{\displaystyle \frac{1}{x^3}}\right) \\ \\ &=\lim\limits_{x\to \infty }\left(\displaystyle \frac{\displaystyle \frac{x^3}{x^3}+\displaystyle \frac{x}{x^3}+\displaystyle \frac{2}{x^3}}{\displaystyle \frac{x^2}{x^3}-\displaystyle \frac{1}{x^3}}\right)\\ \\ &=\lim\limits_{x\to \infty }\left(\displaystyle \frac{1+\displaystyle \frac{1}{x^2}+\displaystyle \frac{2}{x^3}}{\displaystyle \frac{1}{x}-\displaystyle \frac{1}{x^3}}\right)\\ \\ &=\displaystyle \frac{1+0+0}{0-0}\\ \\ &=\infty \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

Advertisements
Advertisements