Differential and Integral Calculus by Feliciano and Uy, Exercise 1.4, Problem 5

Advertisements

PROBLEM:

Evaluate limx(8x54x2+3)\displaystyle \lim\limits_{x\to \infty }\left(\frac{8x-5}{\sqrt{4x^2+3}}\right)


Advertisements

SOLUTION:

Divide by the highest denominator power

limx(8x54x2+3)=limx(8x54x2+31x1x)=limx(8xx5x4x2x2+3x2)=limx(85x4+3x2)=804+0=82=4  (Answer)\begin{align*} \displaystyle \lim\limits_{x\to \infty }\left(\displaystyle \frac{8x-5}{\sqrt{4x^2+3}}\right) & =\displaystyle \lim\limits_{x\to \infty }\left(\displaystyle \frac{8x-5}{\sqrt{4x^2+3}}\cdot \displaystyle \frac{\displaystyle \frac{1}{x}}{\displaystyle \frac{1}{x}}\right) \\ \\ & =\displaystyle \lim\limits_{x\to \infty }\left(\displaystyle \frac{\displaystyle \frac{8x}{x}-\displaystyle \frac{5}{x}}{\sqrt{\displaystyle \frac{4x^2}{x^2}+\displaystyle \frac{3}{x^2}}}\right)\\ \\ & =\displaystyle \lim\limits_{x\to \infty }\left(\displaystyle \frac{8-\displaystyle \frac{5}{x}}{\displaystyle \sqrt{4+\displaystyle \frac{3}{x^2}}}\right) \\ \\ & =\displaystyle \frac{8-0}{\sqrt{4+0}} \\ \\ & =\displaystyle \frac{8}{2} \\ \\ & =\displaystyle 4 \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

Advertisements
Advertisements