Hibbeler Statics 14E P2.2 — Resultant of a System of Two Forces


Determine the magnitude of the resultant force FR=F1+F2\textbf{F}_{\text{R}} = \textbf{F}_1 + \textbf{F}_2 and its direction, measured counterclockwise from the positive x axis. 

Engineering Mechanics: Statics figure for Problem 2-3

Engineering Mechanics: Statics 13th Edition by RC Hibbeler, Problem 2-1
Engineering Mechanics: Statics 14th Edition by RC Hibbeler, Problem 2-3


SOLUTION:

The parallelogram law of the force system is shown.

Consider the triangle AOB.

Using cosine law to solve for the resultant force FR\textbf{F}_{\text{R}}

FR=(250)2+(375)22(250)(375)cos75=393.2 lb=393lb\begin{align*} \textbf{F}_\text{R} & =\sqrt{\left(250\right)^2+\left(375\right)^2-2\left(250\right)\left(375\right) \cos\:75^{\circ} }\\ & =393.2 \ \text{lb}\\ & =393\:\text{lb}\\ \end{align*}

The value of angle θ can be solved using sine law. 

393.2sin(75)=250sinθsinθ=250 sin75°393.2θ=sin1(250 sin75°393.2)θ=37.89\begin{align*} \frac{393.2}{\sin\:\left(75^{\circ} \right)} & = \frac{250}{\sin\:\theta } \\ \sin \theta & = \frac{250 \ \sin75 \degree}{393.2}\\ \theta & =\sin^{-1} \left(\frac{250 \ \sin75 \degree}{393.2}\right)\\ \theta & = 37.89^{\circ}\\ \end{align*}

Solve for the unknown angle ϕ \phi .

ϕ=36045+37.89=353\phi =360^{\circ} -45^{\circ} +37.89^{\circ} =353^{\circ}

The resultant force has a magnitude of 393 lb and is located 353º measured counterclockwise from the positive x-axis.


Advertisements
Advertisements