Find the magnitudes of velocities vA and vB in Figure 3.55
Solution:
Basically, we are given an oblique triangle. First, we shall determine the value of the interior angle at the intersection of vA and vB. We can solve this knowing that the sum of the interior angles of a triangle is 180°.
To solve for vA and vB, we will use the sine law.
\begin{align*} \frac{\text{v}_{\text{A}}}{\sin 23^{\circ} } & =\frac{6.72\:\text{m/s}}{\sin 130.5^{\circ} } \\ \text{v}_{\text{A}} & =\frac{6.72\:\text{m/s}\:\sin \:23^{\circ }\:}{\sin \:130.5^{\circ }\:} \\ \text{v}_{\text{A}} & =3.45\:\text{m/s} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}
Using the same law to solve for the value of vB, we have
\begin{align*} \frac{\text{v}_{\text{B}}}{\sin 26.5^{\circ} } & =\frac{6.72\:\text{m/s}}{\sin 130.5^{\circ} } \\ \text{v}_{\text{B}} & =\frac{6.72\:\text{m/s}\:\sin \:26.5^{\circ }\:\:}{\sin \:130.5^{\circ }\:} \\ \text{v}_{\text{B}} & =3.94\:\text{m/s} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}
Advertisements
Advertisements