Hibbeler Statics 14E P1.10 — Representing Combinations of Units in the Correct SI Form


Represent each of the following combinations of units in the correct SI form: (a) GNµm, (b) kg/µm, (c) N/ks2, and (d) KN/µs.

Statics of Rigid Bodies 14th Edition by RC Hibbeler, Problem 1-10


Solution:

Part A

GNμm=(109 N)(106 m)=103 Nm=kNm\begin{align*} \text{GN} \cdot \mu \text{m} & = \left( 10^9 \ \text{N} \right)\left( 10^{-6} \ \text{m} \right)\\ & = 10^3 \ \text{N} \cdot \text{m}\\ & = \text{kN} \cdot \text{m} \end{align*}

Part B

kg/μm=103 g106 m=109 gm=Gg/m\begin{align*} \text{kg/}\mu\text{m} & = \frac{10^3 \ \text{g}}{10^{-6} \ \text{m}} \\ & = 10^9 \ \frac{\text{g}}{\text{m}} \\ & = \text{Gg/m} \end{align*}

Part C

N/ks2=N(103 s)2=N106 s2=106 Ns2=μN/s2\begin{align*} \text{N/ks}^2 & = \frac{\text{N}}{\left( 10^3 \ \text{s} \right)^2}\\ & = \frac{\text{N}}{10^6 \ \text{s}^2} \\ & = 10^{-6} \ \frac{\text{N}}{\text{s}^2} \\ & = \mu \text{N}/\text{s}^2 \end{align*}

Part D

kN/μs=103 N106 s=109 Ns=GN/s\begin{align*} \text{kN}/ \mu\text{s} & = \frac{10^3 \ \text{N}}{10^{-6} \ \text{s}} \\ & = 10^9 \ \frac{\text{N}}{\text{s}}\\ & = \text{GN/s} \end{align*}

Advertisements
Advertisements