College Physics by Openstax Chapter 2 Problem 64


(a) Take the slope of the curve in Figure 2.64 to find the jogger’s velocity at t=2.5 s. (b) Repeat at 7.5 s. These values must be consistent with the graph in Figure 2.65.

Figure 2.64

Solution:

Part A

To find the slope at t=2.5 s, we need the position values at t= 0 s and t=5 s. When t=0 st = 0 \ \text{s}, x=0 mx = 0 \ \text{m}, and when t=5 st = 5 \ \text{s}, x=17.5 mx = 17.5 \ \text{m}. The velocity at t=2.5 s is

velocity=slopev=ΔxΔtv=x2x1t2t1v=17.5 m0 m5 s0 sv=3.5 m/s  (Answer)\begin{align*} \text{velocity} & =\text{slope} \\ \text{v} & =\frac{\Delta x}{\Delta t} \\ \text{v} & = \frac{x_2-x_1}{t_2-t_1} \\ \text{v} & = \frac{17.5\ \text{m}-0\ \text{m}}{5 \ \text{s}-0\ \text{s}} \\ \text{v} & =3.5 \ \text{m/s} \ \qquad \ {\color{DarkOrange} \left( \text{Answer} \right)} \\ \end{align*}

Part B

When t=10 st = 10 \ \text{s}, x=2.5 mx=2.5 \ \text{m}. Considering the points at t=5 s and t=10 s, the slope at 7.5 s is

velocity=slopev=ΔxΔtv=x2x1t2t1v=2.5 m17.5 m10 s5 sv=3.0 m/s  (Answer)\begin{align*} \text{velocity} & =\text{slope} \\ \text{v} & =\frac{\Delta x}{\Delta t} \\ \text{v} & = \frac{x_2-x_1}{t_2-t_1} \\ \text{v} & = \frac{2.5\ \text{m}-17.5\ \text{m}}{10 \ \text{s}-5\ \text{s}} \\ \text{v} & =-3.0 \ \text{m/s} \ \qquad \ {\color{DarkOrange} \left( \text{Answer} \right)} \\ \end{align*}

Advertisements
Advertisements