Find the general solution of the differential equation
\frac{d}{dx}\left(\frac{dy}{dx}\right)=6x+3
Solution:
\begin{align*} \frac{d}{dx}\left(\frac{dy}{dx}\right) & =6x+3 \\\ \\ let\:u & =\frac{dy}{dx} \\\ \\ \frac{du}{dx} & =6x+3 \\\ \\ Integrate,\\ \int \frac{du}{dx} & =\int (6x+3)dx \\\ \\ \int \frac{du}{dx} & =6\int xdx+3\int dx \\\ \\ u & =\frac{6x^2}{2}+3x+C_1 \\\ \\ u & =3x^2+3x+C_1 \\\ \\ Substitute, \\ \frac{dy}{dx} & =3x^2+3x+C_1 \\\ \\ dy & =\left(3x^2+3x+C_1\right)dx \\\ \\ Integrate,\\ \int dy & =\int (3x^2+3x+C_1)dx \\\ \\ \int dy & =3\int x^2dx+3\int xdx+C_1\int dx \\\ \\ y & =\frac{3x^3}{3}+\frac{3x^2}{2}+C_1x+C_2 \\\ \\ Simplify, \\ y & =x^3+\frac{3x^2}{2}+C_1x+C_2 \\ \end{align*}
Advertisements
Advertisements