Find the general solution of the differential equation
y''+2y'-6x-3=0
Solution:
A second-order differential equation can be written in the form:
ay″ + by' + cy = g(x)
Therefore, the problem given is a second order linear equation.
Here are STEPS on how to get the general solution:
i. simplify the equation to a Second ODE Form
y''+2y'=6x+3
ii. Let
\begin{align*} y' = P=\frac{dy}{dx} \\ \\ and \\ \\ y'' = \frac{dP}{dx} \\ \\ \frac{dP}{dx}+P2\:=\:6x+3 \end{align*}
iii. By recalling, we can see that the equation is in First-order linear differential equation form. Solving the simplified equation using FOLDE.
\begin{align*} P(x) & =2 \\ and \\ Q(x) &=6x+3 \\ \\ \frac{dP}{dx}+P2\:& =\:6x+3 \end{align*}
Find the integrating factor
\begin{align*} ɸ & =e^{\int \:P\left(x\right)dx} \\ ɸ & =e^{\int \:\:2dx} \\ ɸ & =e^{2x} \end{align*}
Substituting the I.F. to the formula
\begin{align*} Pɸ & =\int \:ɸQ\left(x\right)dx+C_1 \\ Pe^{2x} & =\int \:e^{2x}(6x+3)dx+C_1 \\ Pe^{2x} & =\int \:\left(e^{2x}6x+3e^{2x}\right)dx+C_1 \end{align*}
Integrating the first term
\begin{align*} \int \:e^{2x}6xdx= 6\cdot \int \:xe^{2x}dx \\ \end{align*}
Let u = 2x and du/2 = dx
\frac{3}{2}\int \:e^uudu
By IBP, Let v=u, dv=du and eudu, n=eu.
\begin{align*} nv-\int ndv & \\ ue^u-\frac{3}{2}\int \:\:e^udu & = e^uu-e^u \\ & =3e^{2x}x-\frac{3}{2}e^{2x} \end{align*}
for the second term
\int \:3e^{2x}dx
Let u = 2x and du/2 = dx
\begin{align*} \frac{3}{2}\int \:e^udu & =\frac{3}{2}e^u \\ & =\frac{3}{2}e^{2x} \end{align*}
Combining all the solved terms we get
\begin{align*} Pe^{2x} & =3e^{2x}x-\frac{3}{2}e^{2x}+\frac{3}{2}e^{2x}+C_1 \\ Pe^{2x} & =3e^{2x}x+C_1 \end{align*}
Based on the equation that we derived it is now a separable differential equation, therefore,
\begin{align*} &\left[\frac{dy}{dx}e^{2x}=3e^{2x}x+C_1\right]\frac{1}{e^{2x}} \\ \frac{dy}{dx} & =3x+\frac{C_1}{e^{2x}} \\ \int \:dy & =\int \:\left(3x+\frac{C_1}{e^{2x}}\right)dx+C_2 \end{align*}
GENERAL SOLUTION:
y=\frac{3x^2}{2}-\frac{C_1e^{-2x}}{2}+C_2