A bacterial population follows the law of exponential growth. If between noon and 2 p.m. the population triples, at what time should the population become 100 times what it was at noon? At 10 a.m. what percentage was present?
SOLUTION:
First, we denote
P as the population of bacteria at anytime
Po as the original bacterial population
t = 0 (12 noon)
t = 2 (2 p.m.)
Let us determine the given and the required
GIVEN:
@12nn to 2p.m.; P= 3Po
REQUIRED:
- what time should the population become 100 times
- at noon
- percentage at 10 a.m.
Using the formula of Applications of Ordinary First-Ordered Differential Equations under Exponential Growth or Decay
\frac{dP}{dt}=kP \\ \int \:\frac{dP}{P}=\int \:kdt\\ e^{ln\:P}\:=\:e^{kt\:+\:C}\\ P=\:Ce^{kt}\:\:\:\:\:(Eq.1)\\ @t=0; P=P_o\\ P_o=Ce^{kt}\\ P_o=Ce^{k\left(0\right)}\\ P_o = C
Substituting to Eq.1., we get
P=\:P_{o\:}e^{kt}\:\:\:\:\:\:\:(Eq.2)
Then from the given condition, from 12 noon to 2 p.m., the population triples (using Eq.2), we will solve for the value of k
@t= 2\:;\:P= 3P_o\\ P=\:P_{o\:}e^{kt}\\ 3P_{o\:}=\:P_{o\:}e^{k\left(2\right)}\\ k=0.54931
We will then come up with the working equation (WE), this will help us solve the required problems
P_{\:}=\:P_{o\:}e^{\left(0.54931\right)t}
1.) what time should the population become 100 times
Using WE,
t=?\:\:;\:\:P=100P_o\\ P_{\:}=\:P_{o\:}e^{\left(0.54931\right)t}\\ 100P_{o\:}=\:P_{o\:}e^{\left(0.54931\right)t}\\ t=8.38\: hrs.\\ t= 8:22:48\: p.m. \; or\:8:23\:p.m.
2.) at noon
P=P_o
3.) percentage at 10 a.m.
@10 a.m.\:\:;\:\:t=-2\\ P_{\:}=\:P_{o\:}e^{\left(0.549\right)\left(-2\right)}\\ P_{\:}=\:P_{o\:}\left(0.33333\right)\\ \%=\frac{P}{P_o}{(100)}=\frac{P_o\left(0.33333\right)}{P_o}{(100)}\\ \%=\:33.33\%