An ordinary workshop grindstone has a radius of 7.50 cm and rotates at 6500 rev/min.
(a) Calculate the magnitude of the centripetal acceleration at its edge in meters per second squared and convert it to multiples of g.
(b) What is the linear speed of a point on its edge?
Solution:
We are given the following values: r=7.50\ \text{cm}, and \omega = 6500\ \text{rev/min} . We need to convert these values into appropriate units so that we can come up with sensical units when we solve for the centripetal acceleration.
r = 7.50 \ \text{cm} = 0.075 \ \text{m}
\omega = 6500 \ \text{rev/min} \times\frac{2\pi \ \text{rad}}{1\ \text{rev}} \times \frac{1 \ \text{min}}{60\ \text{sec}} = 680.6784 \ \text{rad/sec}
Part A
We are asked to solve for the centripetal acceleration a_{c}. Basing on the given data, we are going to use the formula
a_{c} = r \omega ^{2}
Substituting the given values, we have
\begin{align*} a_{c} & = r \omega ^2 \\ \\ a_{c} & = \left( 0.075 \ \text{m} \right) \left( 680.6784 \ \text{rad/sec} \right)^2 \\ \\ a_{c} & = 34749.2313 \ \text{m/s}^2 \\ \\ a_{c} & = 3.47 \times 10^{4} \ \text{m/s} ^2 \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}
Now, we can convert the centripetal acceleration in multiples of g.
\begin{align*} a_{c} & = 34749.2313 \ \text{m/s}^2 \times \frac{g}{9.81 \ \text{m/s}^2}\\ \\ a_{c} & =3542.2254g \\ \\ a_{c} & = 3.54\times 10^3 g \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}
Part B
We are then asked for the linear speed, v of the point on the edge. So, we can use the given values to find the linear speed. We are going to use the formula
v=r\omega
If we substitute the given values, we have
\begin{align*} v & = r \omega \\ \\ v & = \left( 0.075 \ \text{m} \right)\left( 680.6784\ \text{rad/sec} \right) \ \ \\ \\ v & = 51.0509 \ \text{m/s} \\ \\ v & = 51.1 \ \text{m/s} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}
Advertisements
Advertisements