How much work does a supermarket checkout attendant do on a can of soup he pushes 0.600 m horizontally with a force of 5.00 N? Express your answer in joules and kilocalories.
Solution:
The work W that a force F does on an object is the product of the magnitude F of the force, times the magnitude d of the displacement, times the cosine of the angle \theta between them. In symbols,
W=Fd \cos \theta
We are given the following values: F=5.00\ \text{N}, d=0.600\ \text{m}, and \theta=0^\circ.
Substitute the given values in the formula for work.
\begin{align*} W & = Fd \cos \theta \\ W & = \left( 5.00\ \text{N} \right)\left( 0.600\ \text{m} \right) \cos 0^\circ \\ W & = 3.00\ \text{Nm} \\ W & = 3.00\ \text{J} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}
The work done is 3.00 Joules. Now, we can convert this in unit of kilocalories knowing that 1\ \text{kcal} = 4186\ \text{J}.
\begin{align*} W & = 3.00\ \text{J} \\ W & = 3.00\ \text{J}\ \times \ \frac{1\ \text{kcal}}{4186\ \text{J}} \\ W & = 0.000717\ \text{kcal} \\ W & = 7.17 \times 10 ^{-4} \ \text{kcal} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}
The work done in kilocalories is about 7.17 \times 10 ^{-4}.