Compare the kinetic energy of a 20,000-kg truck moving at 110 km/h with that of an 80.0-kg astronaut in orbit moving at 27,500 km/h.
Solution:
The translational kinetic energy of an object of mass m moving at speed v is KE=\frac{1}{2}mv^{2}.
The Kinetic Energy of the Truck
For the truck, we are given the following:
\begin{align*} m & = 20 000\ \text{kg} \\ v & = 110\ \frac{\text{km}}{\text{hr}} \times \frac{1000\ \text{m}}{1\ \text{km}} \times \frac{1\ \text{hr}}{3600\ \text{s}} = 30.5556\ \text{m}/\text{s} \end{align*}
Substitute these values to compute for the kinetic energy of the truck.
\begin{align*} KE_{t} & = \frac{1}{2} mv^{2} \\ KE_{t} & = \frac{1}{2} \left( 20 000\ \text{kg} \right) \left( 30.5556\ \text{m}/\text{s} \right)^{2} \\ KE_{t} & = 9 336 446.9136\ \text{J} \\ KE_{t} & = 9.34 \times 10^{6} \ \text{J} \end{align*}
The Kinetic Energy of the Astronaut
For the astronaut, we have the following given values
\begin{align*} m & = 80\ \text{kg} \\ v & = 27 500\ \frac{\text{km}}{\text{hr}} \times \frac{1000\ \text{m}}{1\ \text{km}} \times \frac{1\ \text{hr}}{3600\ \text{s}} = 7638.8889\ \text{m}/\text{s} \end{align*}
The kinetic energy of the astronaut is calculated as
\begin{align*} KE_{a} & = \frac{1}{2} mv^{2} \\ KE_{a} & = \frac{1}{2} \left( 80\ \text{kg} \right) \left( 7638.8889\ \text{m}/\text{s} \right)^{2} \\ KE_{a} & = 2 334 104 945 .0617\ \text{J} \\ KE_{a} & = 2.33 \times 10^{9} \ \text{J} \end{align*}
Comparing the Kinetic Energies of the truck and the astronaut
\begin{align*} \frac{KE_{a}}{KE_{t}} & = \frac{2 334 104 945 .0617\ \text{J}}{9 336 446.9136\ \text{J}} \\ \frac{KE_{a}}{KE_{t}} & = 250 \\ KE_{a} & = 250\ KE_{t} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}
The kinetic energy of the astronaut is 250 times larger than the kinetic energy of the truck.