Author Archives: annemarylineggamet

Elementary Differential Equations by Dela Fuente, Feliciano, and Uy Chapter 9 Problem 1 – Special Second-Ordered Differential Equations


Find the General Solution

ddx(dydx)=6x+3\frac{d}{dx}\left(\frac{dy}{dx}\right)=\:6x\:+\:3

Solution:

ddx(dydx)=6x+3solve  the  equation  using  case  1,let  u=dydxdudx=(6x+3)using  separation  of  variable  divide  both  sides  by  dx,du=(6x+3)dxby  integrating  using  the  sum  rule:we  get,u=3x2+3x+C1substitute  the  value  of  u=dydxdydx=3x2+3x+C1using  separation  of  variable:dy=(3x2+3x+C1)dxapply  the  sum  rule:dy=3x2dx+3xdx+C1dxy=x3+3x22+C1x+C2\frac{d}{dx}\left(\frac{dy}{dx}\right)=\:6x\:+\:3 \\ solve\; the\; equation\; using\; case\; 1,\\ let\; u=\frac{dy}{dx} \\ \int \:\frac{du}{dx}\:=\:\int \:\left(6x\:+\:3\right)\\ using\; separation\; of\; variable\; divide\; both\; sides\; by\; dx,\\ \int \:du\:=\:\int \:\left(6x\:+\:3\right)dx\\ by\; integrating\; using\; the\; sum\; rule:\\ we\; get,\\ u=3x^2\:+\:3x\:+\:C_1\\ substitute\; the\; value\; of\; u=\frac{dy}{dx} \\ \frac{dy}{dx}=3x^2\:+\:3x\:+\:C_1\\ using\; separation\; of\; variable:\\ \int \:dy = \int \:\left(3x^2+3x\:+\:C_1\right)dx\\ apply\; the\; sum\; rule:\\ \int \:dy=\int \:3x^2dx+\int \:3xdx+ \int \:C_1dx\\ y=x^3+\frac{3x^2}{2}+C_1x+C_2\\

Advertisements
Advertisements