Elementary Differential Equations by Dela Fuente, Feliciano, and Uy Chapter 9 Problem 1 – Special Second-Ordered Differential Equations Find the General Solution ddx(dydx)= 6x + 3\frac{d}{dx}\left(\frac{dy}{dx}\right)=\:6x\:+\:3dxd(dxdy)=6x+3 Solution: ddx(dydx)= 6x + 3solve the equation using case 1,let u=dydx∫ dudx = ∫ (6x + 3)using separation of variable divide both sides by dx,∫ du = ∫ (6x + 3)dxby integrating using the sum rule:we get,u=3x2 + 3x + C1substitute the value of u=dydxdydx=3x2 + 3x + C1using separation of variable:∫ dy=∫ (3x2+3x + C1)dxapply the sum rule:∫ dy=∫ 3x2dx+∫ 3xdx+∫ C1dxy=x3+3x22+C1x+C2\frac{d}{dx}\left(\frac{dy}{dx}\right)=\:6x\:+\:3 \\ solve\; the\; equation\; using\; case\; 1,\\ let\; u=\frac{dy}{dx} \\ \int \:\frac{du}{dx}\:=\:\int \:\left(6x\:+\:3\right)\\ using\; separation\; of\; variable\; divide\; both\; sides\; by\; dx,\\ \int \:du\:=\:\int \:\left(6x\:+\:3\right)dx\\ by\; integrating\; using\; the\; sum\; rule:\\ we\; get,\\ u=3x^2\:+\:3x\:+\:C_1\\ substitute\; the\; value\; of\; u=\frac{dy}{dx} \\ \frac{dy}{dx}=3x^2\:+\:3x\:+\:C_1\\ using\; separation\; of\; variable:\\ \int \:dy = \int \:\left(3x^2+3x\:+\:C_1\right)dx\\ apply\; the\; sum\; rule:\\ \int \:dy=\int \:3x^2dx+\int \:3xdx+ \int \:C_1dx\\ y=x^3+\frac{3x^2}{2}+C_1x+C_2\\ dxd(dxdy)=6x+3solvetheequationusingcase1,letu=dxdy∫dxdu=∫(6x+3)usingseparationofvariabledividebothsidesbydx,∫du=∫(6x+3)dxbyintegratingusingthesumrule:weget,u=3x2+3x+C1substitutethevalueofu=dxdydxdy=3x2+3x+C1usingseparationofvariable:∫dy=∫(3x2+3x+C1)dxapplythesumrule:∫dy=∫3x2dx+∫3xdx+∫C1dxy=x3+23x2+C1x+C2 Advertisements Advertisements
You must be logged in to post a comment.