Author Archives: aqua0201

Elementary Differential Equations by Dela Fuente, Feliciano, and Uy Chapter 9 Problem 4 — Special Second-Ordered Differential Equations


Find the general solution of the differential equation

y''+2y'-6x-3=0

Solution:

A second-order differential equation can be written in the form:

ay″ + by' + cy = g(x)

Therefore, the problem given is a second order linear equation.

Here are STEPS on how to get the general solution:

i. simplify the equation to a Second ODE Form

y''+2y'=6x+3

ii. Let

\begin{align*}
y' = P=\frac{dy}{dx} 
\\
\\
and
\\
\\
y'' = \frac{dP}{dx}
\\

\\
\frac{dP}{dx}+P2\:=\:6x+3
\end{align*}

iii. By recalling, we can see that the equation is in First-order linear differential equation form. Solving the simplified equation using FOLDE.

\begin{align*}
P(x) & =2
\\
and
\\
Q(x) &=6x+3
\\
\\
\frac{dP}{dx}+P2\:& =\:6x+3
\end{align*}

Find the integrating factor

\begin{align*}
ɸ & =e^{\int \:P\left(x\right)dx}
\\
ɸ & =e^{\int \:\:2dx}
\\
ɸ & =e^{2x}
\end{align*}

Substituting the I.F. to the formula

\begin{align*}
Pɸ & =\int \:ɸQ\left(x\right)dx+C_1
\\
Pe^{2x} & =\int \:e^{2x}(6x+3)dx+C_1
\\
Pe^{2x} & =\int \:\left(e^{2x}6x+3e^{2x}\right)dx+C_1
\end{align*}

Integrating the first term

\begin{align*}
\int \:e^{2x}6xdx=

6\cdot \int \:xe^{2x}dx
\\
\end{align*}

Let u = 2x and du/2 = dx

\frac{3}{2}\int \:e^uudu

By IBP, Let v=u, dv=du and eudu, n=eu.

\begin{align*}
nv-\int ndv &
\\
ue^u-\frac{3}{2}\int \:\:e^udu & = e^uu-e^u
\\
& =3e^{2x}x-\frac{3}{2}e^{2x}
\end{align*}

for the second term

\int \:3e^{2x}dx

Let u = 2x and du/2 = dx

\begin{align*}
\frac{3}{2}\int \:e^udu & =\frac{3}{2}e^u
\\
& =\frac{3}{2}e^{2x}
\end{align*}

Combining all the solved terms we get

\begin{align*}
Pe^{2x} & =3e^{2x}x-\frac{3}{2}e^{2x}+\frac{3}{2}e^{2x}+C_1
\\
Pe^{2x} & =3e^{2x}x+C_1
\end{align*}

Based on the equation that we derived it is now a separable differential equation, therefore,

\begin{align*}
&\left[\frac{dy}{dx}e^{2x}=3e^{2x}x+C_1\right]\frac{1}{e^{2x}}
\\
\frac{dy}{dx} & =3x+\frac{C_1}{e^{2x}}
\\
\int \:dy & =\int \:\left(3x+\frac{C_1}{e^{2x}}\right)dx+C_2
\end{align*}

GENERAL SOLUTION:

y=\frac{3x^2}{2}-\frac{C_1e^{-2x}}{2}+C_2

Advertisements
Advertisements