Author Archives: Engineering Math

Hibbeler Statics 14E P1.12 — Evaluation of Expression to Three Significant Figures with Appropriate SI Units


Evaluate each of the following to three significant figures and express each answer in SI units using an appropriate prefix: (a) (684 µm)/(43 ms), (b) (28 ms)(0.0458 Mm)/(348 mg), (c) (2.68 mm)(426 Mg).

Statics of Rigid Bodies 14th Edition by RC Hibbeler, Problem 1-12


Solution:

Part A

\begin{align*}
\left( 684 \ \mu\text{m} \right)/43 \ \text{ms} & =\frac{684\times 10^{-6} \ \text{m}}{43\times 10^{-3} \ \text{s}}\\
& = \frac{15.9\times 10^{-3}\ \text{m}}{\text{s}}\\
& = 15.9 \  \text{mm/s}
\end{align*}

Part B

\begin{align*}
\left( 28 \  \text{ms} \right)\left( 0.0458 \ \text{Mm} \right)/\left( 348 \ \text{mg} \right) & = \frac{\left[ 28\times 10^{-3} \ \text{s} \right]\left[ 45.8\times 10^{-3}\times 10^6 \ \text{m} \right]}{348\times 10^{-3}\times 10^{-3} \ \text{kg}} \\
& = \frac{3.69\times 10^6 \ \text{m}\cdot \text{s}}{\text{kg}}\\
& = 3.69 \  \text{Mm}\cdot \text{s}/\text{kg}\\
\end{align*}

Part C

\begin{align*}
\left( 2.68 \ \text{mm} \right)\left( 426 \ \text{Mg} \right) & = \left[ 2.68\times 10^{-3} \ \text{m} \right]\left[ 426\times 10^3 \ \text{kg} \right]\\
& = 1.14\times 10^3 \ \text{m}\cdot \text{kg}\\
& = 1.14 \  \text{km}\cdot \text{kg}\\
\end{align*}

Advertisements
Advertisements

Hibbeler Statics 14E P1.11 — Representing Measurements with SI units Having Appropriate Prefix


Represent each of the following with SI units having an appropriate prefix: (a) 8653 ms, (b) 8368 N, (c) 0.893 kg.

Statics of Rigid Bodies 14th Edition by RC Hibbeler, Problem 1-11


Solution:

Part A

\begin{align*}
8653 \ \text{ms} & = 8653 \ \left( 10^{-3} \right) \ \text{s} \\
& =8.653 \ \text{s}
\end{align*}

Part B

\begin{align*}
8368 \ \text{N} & = 8.368\times 10^3 \ \text{N}\\
& = 8.368 \ \text{kN}\\
\end{align*}

Part C

\begin{align*}
0.893 \  \text{kg} & = 0.893\times 10^3 \ \text{g} \\
& =893 \ \text{g}
\end{align*}

Advertisements

Determining if a given Differential Equation is Separable or Not


Determine whether each of the following differential equations is or is not separable, and, if it is separable, rewrite the equation in the form dy/dx=f(x) g(y).
\qquad \textbf{a}) \quad \frac{dy}{dx}=xy-3x-2y+6
\qquad \textbf{b})\quad \frac{dy}{dx}=\sin \left( x+y \right)
\qquad \textbf{c}) \quad y\frac{dy}{dx}=e^{x-3y^2}


Solution:

Part A

\begin{align*}
\frac{dy}{dx} & = xy-3x-2y+6 \\
\frac{dy}{dx} & = \left( xy-3x \right)-\left( 2y-6 \right)\\
\frac{dy}{dx} & = x\left( y-3 \right)-2\left( y-3 \right)\\
\frac{dy}{dx} & = \left( x-2 \right)\left( y-3 \right)
\end{align*}

Since F(x,y) is factorable in the form f(x) g(y), the given differential equation is separable.

Part B

\begin{align*}
\frac{dy}{dx} & = \sin\left( x+y \right) \\
\frac{dy}{dx} & = \sin\left( x \right)\cos\left( y \right) +\cos\left( x \right)\sin\left( y \right)\\
\end{align*}

Since F(x,y) is not factorable in the form f(x) g(y), the given differential equation is not separable.

Part C

\begin{align*}
y \frac{dy}{dx} & = e^{x-3y^2}\\
y \frac{dy}{dx} & = \frac{e^x}{e^{3y^2}}\\
\frac{dy}{dx} & =\frac{e^x}{y e^{3y^2}} \\
\frac{dy}{dx} & = e^x \left( \frac{1}{ye^{3y^2}} \right) \\
\end{align*}

Since F(x,y) is factorable in the form f(x) g(y), the given differential equation is separable.


Hibbeler Statics 14E P1.10 — Representing Combinations of Units in the Correct SI Form


Represent each of the following combinations of units in the correct SI form: (a) GNµm, (b) kg/µm, (c) N/ks2, and (d) KN/µs.

Statics of Rigid Bodies 14th Edition by RC Hibbeler, Problem 1-10


Solution:

Part A

\begin{align*}
\text{GN} \cdot  \mu \text{m} & = \left( 10^9 \ \text{N} \right)\left( 10^{-6} \ \text{m} \right)\\
& = 10^3 \ \text{N} \cdot \text{m}\\
& = \text{kN} \cdot \text{m}
\end{align*}

Part B

\begin{align*}
\text{kg/}\mu\text{m} & = \frac{10^3 \ \text{g}}{10^{-6} \ \text{m}} \\
& = 10^9 \ \frac{\text{g}}{\text{m}} \\
& = \text{Gg/m}
\end{align*}

Part C

\begin{align*}
\text{N/ks}^2 & = \frac{\text{N}}{\left( 10^3 \ \text{s} \right)^2}\\
& = \frac{\text{N}}{10^6 \ \text{s}^2} \\
& = 10^{-6} \ \frac{\text{N}}{\text{s}^2} \\
& = \mu \text{N}/\text{s}^2
\end{align*}

Part D

\begin{align*}
\text{kN}/ \mu\text{s} & = \frac{10^3 \ \text{N}}{10^{-6} \ \text{s}} \\
& = 10^9 \ \frac{\text{N}}{\text{s}}\\
& = \text{GN/s}
\end{align*}

Advertisements
Advertisements

Hibbeler Statics 14E P1.8 — Representing Combinations of Units in the Correct SI Form using Appropriate Prefix


Represent each of the following combinations of units in the correct SI form using an appropriate prefix: (a) Mg/mm, (b) mN/μs, (c) μm∙Mg.

Statics of Rigid Bodies 14th Edition by RC Hibbeler, Problem 1-8


Solution:

Part A

\begin{align*}
\text{Mg/mm} & = \frac{10^6 \ \text{g}}{10^{-3} \ \text{m}} \\
& = 10^9 \ \frac{\text{g}}{\text{m}}\\
& = \text{Gg/m}
\end{align*}

Part B

\begin{align*}
\text{mN/} \mu \text{s} & = \frac{10^{-3} \ \text{N}}{10^{-6} \ \text{s}} \\
& = 10^3 \ \frac{\text{N}}{\text{s}} \\
& = \text{kN/s}
\end{align*}

Part C

\begin{align*}
\mu \text{m}\cdot \text{Mg} & = \left( 10^{-6} \ \text{m} \right)\left( 10^6 \ \text{g} \right) \\
& = \text{m}\cdot \text{g}\\
\text{This can also be written as:} \\
& = \text{mm} \cdot \text{kg}
\end{align*}

Advertisements
Advertisements

Hibbeler Statics 14E P1.5 — Representing a number between 0.1 and 1000 Using an Appropriate Prefix


Represent each of the following as a number between 0.1 and 1000 using an appropriate prefix: (a) 45 320 kN, (b) 568(105) mm, (c) 0.00563 mg.

Statics of Rigid Bodies 14th by RC Hibbeler, Problem 1-5


Solution:

Part A

\begin{align*}
45 \ 320 \  \text{kN} & = 45.3 \times 10^3 \ \text{kN}\\
& = 45.3\times 10^3\times 10^3 \ \text{N}\\
& = 45.3 \times 10^6 \ \text{N}\\
& = 45.3 \  \text{MN}
\end{align*}

Part B

\begin{align*}
568\left( 10^5 \right)\ \text{mm} & =568\left( 10^5 \right)\times 10^{-3} \ \text{m}\\
& = 568\times 10^2 \ \text{m} \\
& = 56.8 \times 10^3 \ \text{m}\\
& = 56.8 \ \text{km}
\end{align*}

Part C

\begin{align*}
0.00563 \ \text{mg} & = 5.63\times 10^{-3} \ \text{mg}\\
& = 5.63\times 10^{-3}\times 10^{-3} \ \text{g}\\
& = 5.63\times 10^{-6} \ \text{g}\\
& = 5.63 \ \mu\text{g}
\end{align*}

Advertisements
Advertisements

Hibbeler Statics 14E P1.4 — Conversion from English units to Metric Units


Convert: (a) 200 lb·ft to N·m, (b) 350 lb/ft3 to kN/m3, (c) 8 ft/h to mm/s. Express the result to three significant figures. Use an appropriate prefix.

Statics of Rigid Bodies 14th by RC Hibbeler, Problem 1-4


Solution:

Part A

\begin{align*}
200\ \text{lb}\cdot \text{ft} & =\left( 200\ \text{lb}\cdot \text{ft} \right)\left( \frac{4.4482\ \text{N}}{1\ \text{lb}} \right)\left( \frac{0.3048\ \text{m}}{1\ \text{ft}} \right)\\
&=271\ \text{N}\cdot \text{m}
\end{align*}

Part B

\begin{align*}
350 \ \text{lb/ft}^3& = \left( \frac{350\ \text{lb}}{1\ \text{ft}^3} \right)\left( \frac{1\ \text{ft}}{0.3048\ \text{m}} \right)^3\left( \frac{4.4482\ \text{N}}{1\ \text{lb}} \right)\left( \frac{1\ \text{kN}}{1000\ \text{N}} \right)\\
& = 55.0\ \text{kN/m}^3
\end{align*}

Part C

\begin{align*}
8 \ \text{ft/hr}& = \left( \frac{8\ \text{ft}}{1\ \text{hr}} \right)\left( \frac{1\ \text{hr}}{3600\ \text{s}} \right)\left( \frac{0.3048\ \text{m}}{1\ \text{ft}} \right)\left( \frac{1000 \ \text{mm}}{1 \ \text{m}} \right)\\
& = 0.677\ \text{mm/s}
\end{align*}

Advertisements
Advertisements

Hibbeler Statics 14E P1.3 — Representing a combination of units in the correct SI form


Represent each of the following combinations of units in the correct SI form using an appropriate prefix: (a) Mg/ms, (b) N/mm, and (c) mN/(kgµs).

Statics of Rigid Bodies 14th Edition by RC Hibbeler, Problem 1-3


Solution:

Part A

\begin{align*}
\text{Mg/ms} & = \frac{10^3 \ \text{kg}}{10^{-3} \ \text{s}} \\
& = 10^6 \text{kg/s}\\
& = \text{Gg/s}
\end{align*}

Part B

\begin{align*}
\text{N/mm} & = \frac{1\ \text{N}}{10^{-3} \ \text{m}}\\
& = 10^3 \ \text{N/m}\\
& = \text{kN/m}
\end{align*}

Part C

\begin{align*}
\frac{\text{mN}}{\left( \text{kg} \cdot \mu \text{s} \right)} & = \frac{10^{-3} \ \text{N}}{10^{-6} \ \text{kg} \cdot \text{s}}\\
& =10^3 \ \text{N}/\left( \text{kg} \cdot \text{s} \right)\\
& = \text{kN}/\left( \text{kg} \cdot  \text{s}\right)
\end{align*}

Advertisements

Skidding on a Curve: Unbanked Curves – Uniform Circular Motion Example Problem

A 1000-kg car rounds a curve on a flat road of radius 50 m at a speed of 15 m/s Will the car follow the curve, or will it skid? Assume: (a) the pavement is dry and the coefficient of static friction is \mu _s=0.60; (b) the pavement is icy and \mu _s=0.25.


Solution:

The forces on the car are gravity mg downward, the normal force FN exerted upward by the road, and a horizontal friction force due to the road. They are shown in the free-body diagram of the car below. The car will follow the curve if the maximum static friction force is greater than the mass times the centripetal acceleration.

Part A

In the vertical direction (y) there is no acceleration. Newton’s second law tells us that the normal force on the car is equal to the weight mg since the road is flat:

\begin{align*}
\sum_{}^{}F_y & =m\ a_c\\
\\
F_N\ -\ mg & =0\\
\\
F_N&=mg\\
\\
F_N &=\left( 1000\ \text{kg} \right)\left( 9.81\ \text{m/s}^2 \right)\\
\\
F_N &=9810\  \text{N}
\end{align*}

In the horizontal direction the only force is friction, and we must compare it to the force needed to produce the centripetal acceleration to see if it is sufficient. The net horizontal force required to keep the car moving in a circle around the curve is

\begin{align*}
\sum_{}^{}F_c & =m\ a_c\\
\\
 & =m\cdot \frac{v^2}{r}\\
\\
& =\left( 1000\ \text{kg} \right)\cdot \frac{\left( 15\ \text{m/s} \right)^2}{50\ \text{m}}\\
\\
&=4500\ \text{N}
\end{align*}

Now we compute the maximum total static friction force (the sum of the friction forces acting on each of the four tires) to see if it can be large enough to provide a safe centripetal acceleration. For (a), \mu _s=0.60, and the maximum friction force attainable is

\begin{align*}
\sum_{}^{}F_{fr_{max}}& =\mu _s \ F_N\\
\\
&=\left( 0.60 \right)\left( 9810\ \text{N} \right)\\
\\
&=5886\ \text{N}
\end{align*}

Since a force of only 4500 N is needed, and that is, in fact, how much will be exerted by the road as a static friction force, the car can follow the curve.

Part B

The maximum static friction force possible is

\begin{align*}
\sum_{}^{}F_{fr_{max}}& =\mu _s \ F_N\\
\\
&=\left( 0.25 \right)\left( 9810\ \text{N} \right)\\
\\
&=2452.5\ \text{N}
\end{align*}

The car will skid because the ground cannot exert sufficient force (4500 N is needed) to keep it moving in a curve of radius 50 m at a speed of 54 km/h.


Revolving Ball (Vertical Circle) – Uniform Circular Motion Example Problem

A 0.150-kg ball on the end of a 1.10-m-long cord (negligible mass) is swung in a vertical circle. (a) Determine the minimum speed the ball must have at the top of its arc so that the ball continues moving in a circle. (b) Calculate the tension in the cord at the bottom of the arc, assuming the ball is moving at twice the speed of part (a).


Solution:

The ball moves in a vertical circle and is not undergoing uniform circular motion. The radius is assumed constant, but the speed v changes because of gravity. Nonetheless, the equation for centripetal acceleration \text{a}_\text{c} = \frac{\text{v}^2}{\text{r}} is valid at each point along the circle, and we use it at the top and bottom points. The free body diagram is shown in the figure below for both positions.

Part A

At the top (point 1), two forces act on the ball: mg, the force of gravity (or weight), and FT1, the tension force the cord exerts at point 1. Both act downward, and their vector sum acts to give the ball its centripetal acceleration ac. We apply Newton’s second law, for the vertical direction, choosing downward as positive since the acceleration is downward (toward the center):

\begin{align*}
\sum_{}^{}\text{F}_\text{v}& =\text{ma}_\text{c}\\
\\
\text{F}_\text{T1}\ +\ \text{mg}&= \text{m} \cdot \frac{\text{v}_1^2}{\text{r}}
\end{align*}

From this equation we can see that the tension force FT1at point 1 will get larger if v1 (ball’s speed at top of circle) is made larger, as expected. But we are asked for the minimum speed to keep the ball moving in a circle. The cord will remain taut as long as there is tension in it. But if the tension disappears (because v1 is too small) the cord can go limp, and the ball will fall out of its circular path. Thus, the minimum speed will occur if FT1 = 0 (the ball at the topmost point), for which the equation above becomes

\text{mg}=\text{m}\cdot \frac{\left( \text{v}_1 \right)^2}{\text{r}}

We solve for v1, we have

\begin{align*}
\text{v}_1&=\sqrt{\text{gr}} \\
\\
&=\sqrt{\left( 9.81\  \text{m/s}^2 \right)\left( 1.10\ \text{m} \right)} \\
\\
&=3.285 \ \text{m/s}
\end{align*}

Therefore, the minimum speed at the top of the circle if the ball is to continue moving in a circular path is about 3.285 m/s.

Part B

When the ball is at the bottom of the circle, the cord exerts its tension force FT2 upward, whereas the force of gravity, mg still acts downward. Choosing upward as positive, Newton’s second law gives:

\begin{align*}
\sum_{}^{}\text{F}_\text{v}& =\text{ma}_\text{c}\\
\\
\text{F}_\text{T2}\ -\ \text{mg}&= \text{m} \cdot \frac{\text{v}_2 ^2}{\text{r}}
\end{align*}

The speed v2 is given as twice that in (a). We solve for FT2

\begin{align*}
F_\text{T2} & = m\cdot \frac{v^2}{r}+mg\\
\\
& = \left( 0.150\ \text{kg} \right)\cdot \frac{\left( 2\times 3.285 \ \text{m/s}\right)^2}{1.10\ \text{m}}+\left( 0.150\ \text{kg} \right)\left( 9.81\ \text{m/s}^2 \right)\\
\\
&=7.358 \ \text{N}
\end{align*}