PROBLEM:
Evaluate x→0lim(1−cos(x)sin(x)sin(2x)).
SOLUTION:
Direct substitution of x=0 gives the indeterminate form 00. Therefore, we should apply trigonometric identities.
We know that sin(2x)=2sin(x)cos(x), so we can rewrite the original function as
x→0lim(1−cos(x)sin(x)sin(2x))=x→0lim(1−cos(x)sin(x)⋅2(sin(x)cos(x)))=2⋅x→0lim(1−cos(x)sin2(x)cos(x))
We also know the Pythagorean identity sin2(x)=1−cos2(x). So,
x→0lim(1−cos(x)sin(x)sin(2x))=2⋅x→0lim(1−cos(x)(1−cos2(x))cos(x))=2⋅x→0lim(1−cos(x)(1+cos(x))(1−cos(x))cos(x))=2⋅x→0lim((1+cos(x))cos(x))=2⋅((1+cos(0))cos(0))=2⋅((1+1)⋅1)=4 (Answer)
You must be logged in to post a comment.