Author Archives: Engineering Math

Differential and Integral Calculus by Feliciano and Uy, Exercise 1.4, Problem 4

Advertisements

PROBLEM:

Evaluate limx(x3+x+2x21)\displaystyle \lim\limits_{x\to \infty }\left(\frac{x^3+x+2}{x^2-1}\right)


Advertisements

Solution:

Divide by the highest denominator power

limx(x3+x+2x21)=limx(x3+x+2x211x31x3)=limx(x3x3+xx3+2x3x2x31x3)=limx(1+1x2+2x31x1x3)=1+0+000=  (Answer)\begin{align*} \lim\limits_{x\to \infty }\left(\displaystyle \frac{x^3+x+2}{x^2-1}\right) & =\lim\limits_{x\to \infty }\left(\displaystyle \frac{x^3+x+2}{x^2-1}\cdot \displaystyle \frac{\displaystyle \frac{1}{x^3}}{\displaystyle \frac{1}{x^3}}\right) \\ \\ &=\lim\limits_{x\to \infty }\left(\displaystyle \frac{\displaystyle \frac{x^3}{x^3}+\displaystyle \frac{x}{x^3}+\displaystyle \frac{2}{x^3}}{\displaystyle \frac{x^2}{x^3}-\displaystyle \frac{1}{x^3}}\right)\\ \\ &=\lim\limits_{x\to \infty }\left(\displaystyle \frac{1+\displaystyle \frac{1}{x^2}+\displaystyle \frac{2}{x^3}}{\displaystyle \frac{1}{x}-\displaystyle \frac{1}{x^3}}\right)\\ \\ &=\displaystyle \frac{1+0+0}{0-0}\\ \\ &=\infty \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

Advertisements
Advertisements

Differential and Integral Calculus by Feliciano and Uy, Exercise 1.4, Problem 3

Advertisements

PROBLEM:

Evaluate limx(4x+5x2+1)\displaystyle \lim\limits_{x\to \infty }\left(\frac{4x+5}{x^2+1}\right)


Advertisements

Solution:

Divide by the highest denominator power

limx(4x+5x2+1)=limx(4x+5x2+11x21x2)=limx(4xx2+5x2x2x2+1x2)=limx(4x+5x21+1x2)=0+01+0=0  (Answer)\begin{align*} \lim\limits_{x\to \infty }\left(\frac{4x+5}{x^2+1}\right) & =\lim\limits_{x\to \infty }\left(\frac{4x+5}{x^2+1}\cdot \frac{\displaystyle\frac{1}{x^2}}{\displaystyle\frac{1}{x^2}}\right) \\ \\ &=\lim\limits_{x\to \infty }\left(\frac{\displaystyle\frac{4x}{x^2}+\displaystyle\frac{5}{x^2}}{\displaystyle\frac{x^2}{x^2}+\displaystyle\frac{1}{x^2}}\right)\\ \\ &=\lim\limits_{x\to \infty }\left(\frac{\displaystyle\frac{4}{x}+\displaystyle\frac{5}{x^2}}{1+\displaystyle\frac{1}{x^2}}\right) \\ \\ &=\displaystyle\frac{0+0}{1+0} \\ \\ &=0 \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

Advertisements
Advertisements

Differential and Integral Calculus by Feliciano and Uy, Exercise 1.4, Problem 2

Advertisements

PROBLEM:

Evaluate limx(3x2+x+2x3+8x+1)\displaystyle \lim\limits_{x\to \infty }\left(\frac{3x^2+x+2}{x^3+8x+1}\right)


Advertisements

Solution:

Divide by the highest denominator power.

limx(3x2+x+2x3+8x+1)=limx(3x2+x+2x3+8x+11x31x3)=limx(3x2x3+xx3+2x3x3x3+8xx3+1x3)=limx(3x+1x2+2x31+8x2+1x3)=0+0+01+0+0=0  (Answer)\begin{align*} \displaystyle \lim\limits_{x\to \infty }\left(\frac{3x^2+x+2}{x^3+8x+1}\right) & =\displaystyle \lim\limits_{x\to \infty }\left(\frac{3x^2+x+2}{x^3+8x+1}\cdot \frac{\displaystyle \frac{1}{x^3}}{\displaystyle \frac{1}{x^3}}\right)\\ \\ &=\lim\limits_{x\to \infty }\left(\displaystyle \frac{\displaystyle \frac{3x^2}{x^3}+\displaystyle \frac{x}{x^3}+\displaystyle \frac{2}{x^3}}{\displaystyle \frac{x^3}{x^3}+\frac{8x}{x^3}+\frac{1}{x^3}}\right)\\ \\ & =\lim\limits_{x\to \infty }\left(\displaystyle \frac{\displaystyle \frac{3}{x}+\frac{1}{x^2}+\displaystyle \frac{2}{x^3}}{1+\displaystyle \frac{8}{x^2}+\frac{1}{x^3}}\right)\\ \\ &=\frac{0+0+0}{1+0+0} \\ \\ &=0\ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

Advertisements
Advertisements

Differential and Integral Calculus by Feliciano and Uy, Exercise 1.4, Problem 1

Advertisements

PROBLEM:

Evaluate limx(6x3+4x2+58x3+7x3) \displaystyle \lim\limits_{x\to \infty }\left( \frac{6x^3+4x^2+5}{8x^3+7x-3}\right)


Advertisements

Solution:

Divide by the highest denominator power.

limx(6x3+4x2+58x3+7x3)=limx(6x3+4x2+58x3+7x31x31x3)=limx(6+4x+5x38+7x23x3)=limx(6+4x+5x3)limx(8+7x23x3)=6+0+08+00=68=34  (Answer)\begin{align*} \displaystyle \lim\limits_{x\to \infty }\left(\frac{6x^3+4x^2+5}{8x^3+7x-3}\right)&=\displaystyle \lim\limits_{x\to \infty }\left(\frac{6x^3+4x^2+5}{8x^3+7x-3}\cdot \displaystyle \frac{\displaystyle \frac{1}{x^3}}{\displaystyle \frac{1}{x^3}}\right) \\ \\ & =\displaystyle \lim\limits_{x\to \infty \:}\left(\displaystyle \frac{6+\displaystyle \frac{4}{x}+\displaystyle \frac{5}{x^3}}{8+\displaystyle \frac{7}{x^2}-\frac{3}{x^3}}\right)\\ \\ & =\displaystyle \frac{\lim\limits_{x\to \infty \:}\left(6+\displaystyle \frac{4}{x}+\frac{5}{x^3}\right)}{\lim\limits_{x\to \infty \:}\left(8+\displaystyle\frac{7}{x^2}-\displaystyle \frac{3}{x^3}\right)}\\ \\ & =\displaystyle \frac{6+0+0}{8+0-0}\\ \\ & =\displaystyle \frac{6}{8}\\ \\ & =\displaystyle \frac{3}{4} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

Advertisements
Advertisements

Differential and Integral Calculus by Feliciano and Uy, Exercise 1.3, Problem 22

Advertisements

PROBLEM:

If f(x)=x22x+3 \displaystyle f\left(x\right)=x^2-2x+3, find limx0(f(x+2)f(2)x)\displaystyle \lim\limits_{x\to 0}\left(\displaystyle \frac{f\left(x+2\right)-f\left(2\right)}{x}\right).


Advertisements

SOLUTION:

limx0(f(x+2)f(2)x)=limx0(((x+2)22(x+2)+3)(2222+3)x)=limx0(((x+2)22(x+2)+3)(3)x)=limx0(((x+2)22(x+2))x)\begin{align*} \displaystyle \lim\limits_{x\to 0}\left(\displaystyle \frac{f\left(x+2\right)-f\left(2\right)}{x}\right)&=\displaystyle \lim\limits_{x\to 0}\left(\displaystyle \frac{\left(\left(x+2\right)^2-2\left(x+2\right)+3\right)-\left(2^2-2\cdot 2+3\right)}{x}\right)\\ \\ & =\displaystyle \lim\limits_{x\to 0}\left(\displaystyle \frac{\left(\left(x+2\right)^2-2\left(x+2\right)+3\right)-\left(3\right)}{x}\right)\\ \\ &=\displaystyle \lim\limits_{x\to 0}\left(\displaystyle \frac{\left(\left(x+2\right)^2-2\left(x+2\right)\right)}{x}\right)\\ \\ \end{align*}

Direct substitution of x=0x=0 gives the indeterminate form 00\frac{0}{0}. Therefore, we proceed by factoring the numerator.

=limx0(x+2)(x+22)x=limx0(x+2)(x)x=limx0(x+2)=0+2=2  (Answer)\begin{align*} & =\displaystyle \lim\limits_{x\to 0}\displaystyle \frac{\left(x+2\right)\left(x+2-2\right)}{x}\\ \\ & =\lim\limits_{x\to 0}\frac{\left(x+2\right)\left(x\right)}{x} \\ \\ & =\lim\limits_{x\to 0}\left(x+2\right) \\ \\ & =0+2 \\ \\ & =2 \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

Advertisements
Advertisements

Differential and Integral Calculus by Feliciano and Uy, Exercise 1.3, Problem 21

Advertisements

PROBLEM:

If f(x)=x22x+3\displaystyle f\left(x\right)=x^2-2x+3, find limx2(f(x)f(2)x2)\displaystyle \lim\limits_{x\to 2}\left(\frac{f\left(x\right)-f\left(2\right)}{x-2}\right).


Advertisements

SOLUTION:

limx2(f(x)f(2)x2)=limx2((x22x+3)(2222+3)x2)=limx2((x22x+3)3x2)=limx2(x22xx2)\begin{align*} \displaystyle \lim\limits_{x\to 2}\left(\displaystyle \frac{f\left(x\right)-f\left(2\right)}{x-2}\right) & =\lim\limits_{x\to 2}\left(\displaystyle \frac{\left(x^2-2x+3\right)-\left(2^2-2\cdot 2+3\right)}{x-2}\right) \\ \\ & =\lim\limits_{x\to 2}\left(\displaystyle \frac{\left(x^2-2x+3\right)-3}{x-2}\right)\\ \\ & =\lim\limits_{x\to 2}\left(\displaystyle \frac{x^2-2x}{x-2}\right)\\ \\ \end{align*}

Direct substitution of x=2x=2 gives the indeterminate form 00\frac{0}{0}. Therefore, we proceed by factoring the numerator.

=limx2(x(x2)x2)=limx2(x)=2  (Answer)\begin{align*} & =\lim\limits_{x\to 2}\left(\displaystyle \frac{x\left(x-2\right)}{x-2}\right) \\ \\ & =\lim\limits_{x\to 2}\left(x\right) \\ \\ & =2 \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

Advertisements
Advertisements

Differential and Integral Calculus by Feliciano and Uy, Exercise 1.3, Problem 20

Advertisements

PROBLEM:

If f(x)=x \displaystyle f\left(x\right)=\sqrt{x}, find limx0(f(9+x)f(9)x)\displaystyle \lim\limits_{x\to 0}\left(\frac{f\left(9+x\right)-f\left(9\right)}{x}\right).


Advertisements

SOLUTION:

limx0(f(9+x)f(9)x)=limx0(9+x9x)\displaystyle \lim\limits_{x\to 0}\left(\displaystyle \frac{f\left(9+x\right)-f\left(9\right)}{x}\right)=\lim\limits_{x\to 0}\left(\displaystyle \frac{\sqrt{9+x}-\sqrt{9}}{x}\right)

Direct substitution of x=0x=0 gives the indeterminate form 00\frac{0}{0}. Therefore, we proceed by rationalizing the numerator.

=limx0(9+x3x9+x+39+x+3)=limx0(9+x9x(9+x+3))=limx0(xx(9+x+3))=limx0(1(9+x+3))=(1(9+0+3))=16  (Answer)\begin{align*} & =\lim\limits_{x\to 0}\left(\displaystyle \frac{\sqrt{9+x}-3}{x}\cdot \displaystyle \frac{\sqrt{9+x}+3}{\sqrt{9+x}+3}\right)\\ \\ & =\lim\limits_{x\to 0}\left(\displaystyle \frac{9+x-9}{x\left(\sqrt{9+x}+3\right)}\right)\\ \\ & =\lim\limits_{x\to 0}\left(\displaystyle \frac{x}{x\left(\sqrt{9+x}+3\right)}\right)\\ \\ & =\lim\limits_{x\to 0}\left(\displaystyle \frac{1}{\left(\sqrt{9+x}+3\right)}\right)\\ \\ & =\left(\displaystyle \frac{1}{\left(\sqrt{9+0}+3\right)}\right)\\ \\ & =\displaystyle \frac{1}{6} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

Advertisements
Advertisements

Differential and Integral Calculus by Feliciano and Uy, Exercise 1.3, Problem 19

Advertisements

PROBLEM:

If f(x)=xf\left(x\right)=\sqrt{x}, find limx4(f(x)f(4)x4)\displaystyle \lim\limits_{x\to 4}\left(\frac{f\left(x\right)-f\left(4\right)}{x-4}\right)


Advertisements

SOLUTION:

limx4(f(x)f(4)x4)=limx4(x4x4)\displaystyle \lim\limits_{x\to 4}\left(\displaystyle \frac{f\left(x\right)-f\left(4\right)}{x-4}\right)=\lim\limits_{x\to 4}\left(\displaystyle \frac{\sqrt{x}-\sqrt{4}}{x-4}\right)

Direct substitution of x=4x=4 gives the indeterminate form 00\frac{0}{0}. Therefore, we proceed by rationalizing the numerator.

=limx4(x2x4)x+2x+2=limx4(x4(x4)(x+2))=limx4(1x+2)=(14+2)=14  (Answer)\begin{align*} & =\lim\limits_{x\to 4}\left(\displaystyle \frac{\sqrt{x}-2}{x-4}\right)\cdot \displaystyle \frac{\sqrt{x}+2}{\sqrt{x}+2} \\ \\ & =\lim\limits_{x\to 4}\left(\displaystyle \frac{x-4}{\left(x-4\right)\left(\sqrt{x}+2\right)}\right) \\ \\ & =\lim\limits_{x\to 4}\left(\displaystyle \frac{1}{\sqrt{x}+2}\right) \\ \\ & =\left(\displaystyle \frac{1}{\sqrt{4}+2}\right) \\ \\ & =\displaystyle \frac{1}{4} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

Advertisements
Advertisements

Differential and Integral Calculus by Feliciano and Uy, Exercise 1.3, Problem 18

Advertisements

PROBLEM:

Evaluate limxπ(sin2(x)1+cos(x)).\displaystyle \lim\limits_{x\to \pi }\left(\frac{\sin^2\left(x\right)}{1+\cos\left(x\right)}\right).


Advertisements

SOLUTION:

Direct substitution of x=πx=\pi gives the indeterminate form 00\frac{0}{0}. Therefore, we should apply trigonometric identities.

We know the Pythagorean identity, sin2(x)=1cos2(x)\sin^2\left(x\right)=1-\cos^2\left(x\right). Therefore, we have

limxπ(sin2(x)1+cos(x))=limxπ(1cos2(x)1+cos(x))=limxπ((1+cos(x))(1cos(x))1+cos(x))=limxπ(1cos(x))=(1cos(π))=(1(1))=2  (Answer)\begin{align*} \displaystyle \lim\limits_{x\to \pi }\left(\displaystyle \frac{\sin^2\left(x\right)}{1+\cos\left(x\right)}\right) & = \displaystyle \lim\limits_{x\to \pi }\left(\displaystyle \frac{1-\cos^2\left(x\right)}{1+\cos\left(x\right)}\right) \\ \\ & = \displaystyle \lim\limits_{x\to \pi }\left(\displaystyle \frac{\left(1+\cos\left(x\right)\right)\left(1-\cos\left(x\right)\right)}{1+\cos\left(x\right)}\right)\\ \\ & =\lim\limits_{x\to \pi }\left(1-\cos\left(x\right)\right)\\ \\ & =\left(1-\cos\left(\pi \right)\right)\\ \\ & =\left(1-\left(-1\right)\right)\\ \\ & =2 \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

Advertisements
Advertisements

Differential and Integral Calculus by Feliciano and Uy, Exercise 1.3, Problem 17

Advertisements

PROBLEM:

Evaluate limx0(sin(x)sin(2x)1cos(x)).\displaystyle \lim\limits_{x\to 0}\left(\displaystyle \frac{\sin\left(x\right)\sin\left(2x\right)}{1-\cos\left(x\right)}\right).


Advertisements

SOLUTION:

Direct substitution of x=0x=0 gives the indeterminate form 00\frac{0}{0}. Therefore, we should apply trigonometric identities.

We know that sin(2x)=2sin(x)cos(x)\sin\left(2x\right)=2\sin\left(x\right)\cos\left(x\right), so we can rewrite the original function as

limx0(sin(x)sin(2x)1cos(x))=limx0(sin(x)2(sin(x)cos(x))1cos(x))=2limx0(sin2(x)cos(x)1cos(x))\begin{align*} \displaystyle \lim\limits_{x\to 0}\left(\displaystyle \frac{\sin\left(x\right)\sin\left(2x\right)}{1-\cos\left(x\right)}\right) & =\lim\limits_{x\to 0}\left(\frac{\sin\left(x\right)\cdot 2\left(\sin\left(x\right) \cos\left(x\right)\right)}{1-\cos\left(x\right)}\right)\\ \\ & =\displaystyle 2\cdot \lim\limits_{x\to 0}\left(\frac{\sin^2\left(x\right)\cos\left(x\right)}{1-\cos\left(x\right)}\right)\\ \end{align*}

We also know the Pythagorean identity sin2(x)=1cos2(x)\sin^2\left(x\right)=1-\cos^2\left(x\right). So,

limx0(sin(x)sin(2x)1cos(x))=2limx0((1cos2(x))cos(x)1cos(x))=2limx0((1+cos(x))(1cos(x))cos(x)1cos(x))=2limx0((1+cos(x))cos(x))=2((1+cos(0))cos(0))=2((1+1)1)=4  (Answer)\begin{align*} \displaystyle \lim\limits_{x\to 0}\left(\displaystyle \frac{\sin\left(x\right)\sin\left(2x\right)}{1-\cos\left(x\right)}\right) & =2\cdot \lim\limits_{x\to 0}\left(\frac{\left(1-\cos^2\left(x\right)\right)\cos\left(x\right)}{1-\cos\left(x\right)}\right)\\ \\ & =2\cdot \lim\limits_{x\to 0}\left(\frac{\left(1+\cos\left(x\right)\right)\left(1-\cos\left(x\right)\right)\cos\left(x\right)}{1-\cos\left(x\right)}\right) \\ \\ & =2\cdot \lim\limits_{x\to 0}\left(\left(1+\cos\left(x\right)\right)\cos\left(x\right)\right) \\ \\ & = 2\cdot \left(\left(1+\cos\left(0\right)\right)\cos\left(0\right)\right) \\ \\ & =2\cdot \left(\left(1+1\right)\cdot 1\right) \\ \\ & =4 \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

Advertisements
Advertisements