Author Archives: Engineering Math

Differential and Integral Calculus by Feliciano and Uy, Exercise 1.3, Problem 18

Advertisements

PROBLEM:

Evaluate \displaystyle \lim\limits_{x\to \pi }\left(\frac{\sin^2\left(x\right)}{1+\cos\left(x\right)}\right).


Advertisements

SOLUTION:

Direct substitution of x=\pi gives the indeterminate form \frac{0}{0}. Therefore, we should apply trigonometric identities.

We know the Pythagorean identity, \sin^2\left(x\right)=1-\cos^2\left(x\right). Therefore, we have

\begin{align*}
\displaystyle \lim\limits_{x\to \pi }\left(\displaystyle \frac{\sin^2\left(x\right)}{1+\cos\left(x\right)}\right) & = \displaystyle \lim\limits_{x\to \pi }\left(\displaystyle \frac{1-\cos^2\left(x\right)}{1+\cos\left(x\right)}\right) \\
\\
& = \displaystyle \lim\limits_{x\to \pi }\left(\displaystyle \frac{\left(1+\cos\left(x\right)\right)\left(1-\cos\left(x\right)\right)}{1+\cos\left(x\right)}\right)\\
\\
& =\lim\limits_{x\to \pi }\left(1-\cos\left(x\right)\right)\\
\\
& =\left(1-\cos\left(\pi \right)\right)\\
\\
& =\left(1-\left(-1\right)\right)\\
\\
& =2 \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)
\end{align*}

Advertisements
Advertisements

Differential and Integral Calculus by Feliciano and Uy, Exercise 1.3, Problem 17

Advertisements

PROBLEM:

Evaluate \displaystyle \lim\limits_{x\to 0}\left(\displaystyle \frac{\sin\left(x\right)\sin\left(2x\right)}{1-\cos\left(x\right)}\right).


Advertisements

SOLUTION:

Direct substitution of x=0 gives the indeterminate form \frac{0}{0}. Therefore, we should apply trigonometric identities.

We know that \sin\left(2x\right)=2\sin\left(x\right)\cos\left(x\right), so we can rewrite the original function as

\begin{align*}
\displaystyle \lim\limits_{x\to 0}\left(\displaystyle \frac{\sin\left(x\right)\sin\left(2x\right)}{1-\cos\left(x\right)}\right) & =\lim\limits_{x\to 0}\left(\frac{\sin\left(x\right)\cdot 2\left(\sin\left(x\right) \cos\left(x\right)\right)}{1-\cos\left(x\right)}\right)\\
\\
& =\displaystyle  2\cdot \lim\limits_{x\to 0}\left(\frac{\sin^2\left(x\right)\cos\left(x\right)}{1-\cos\left(x\right)}\right)\\
\end{align*}

We also know the Pythagorean identity \sin^2\left(x\right)=1-\cos^2\left(x\right). So,

\begin{align*}
\displaystyle \lim\limits_{x\to 0}\left(\displaystyle \frac{\sin\left(x\right)\sin\left(2x\right)}{1-\cos\left(x\right)}\right) & =2\cdot \lim\limits_{x\to 0}\left(\frac{\left(1-\cos^2\left(x\right)\right)\cos\left(x\right)}{1-\cos\left(x\right)}\right)\\
\\
& =2\cdot \lim\limits_{x\to 0}\left(\frac{\left(1+\cos\left(x\right)\right)\left(1-\cos\left(x\right)\right)\cos\left(x\right)}{1-\cos\left(x\right)}\right) \\
\\
& =2\cdot \lim\limits_{x\to 0}\left(\left(1+\cos\left(x\right)\right)\cos\left(x\right)\right) \\
\\
& = 2\cdot \left(\left(1+\cos\left(0\right)\right)\cos\left(0\right)\right) \\
\\
& =2\cdot \left(\left(1+1\right)\cdot 1\right) \\
\\
& =4 \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)
\end{align*}

Advertisements
Advertisements

Differential and Integral Calculus by Feliciano and Uy, Exercise 1.3, Problem 16

Advertisements

PROBLEM:

Evaluate \displaystyle \lim\limits_{x\to 0}\left(\frac{1-\cos^2\left(x\right)}{1+\cos\left(x\right)}\right)


Advertisements

SOLUTION:

This problem can be solved using a direct substitution of x=0. That is

\begin{align*}
\lim\limits_{x\to 0}\left(\frac{1-\cos^2  x }{1+\cos x }\right) & =\frac{1-\cos^2\left(0\right)}{1+\cos\left(0\right)} \\
\\
& =\frac{1-1}{1+1}\\ 
\\
& = 0 \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)
\end{align*}

Advertisements
Advertisements

Differential and Integral Calculus by Feliciano and Uy, Exercise 1.3, Problem 15

Advertisements

PROBLEM:

Evaluate \displaystyle \lim_{x\to 0}\left(\frac{\sin^3x}{\sin x-\tan x}\right).


Advertisements

SOLUTION:

A straight substitution of \displaystyle x=\frac{\pi }{4} leads to the indeterminate form \displaystyle \frac{0}{0} which is meaningless.

Therefore, to evaluate the limit of the given function, we proceed as follows

\begin{align*}
\displaystyle \lim _{x\to 0}\left(\frac{\sin^3x}{\sin x-\tan x}\right) & =\lim _{x\to 0}\left(\frac{\sin^3x}{\sin x-\frac{\sin x}{\cos x}}\right) \\ 
\\
& =\lim _{x\to 0}\left(\frac{\sin^3 x}{\frac{\sin x \cos x - \sin x}{\cos x}}\right) \\
\\
& = \lim _{x\to 0}\left(\frac{\sin^3 x \cos x }{\sin x \cos x - \sin x}\right) \\
\\
&=\lim _{x\to \:0}\left(\frac{\sin^3 x \cos x}{\left(\sin x \right)\left(\cos x-1\right)}\right) \\
\\
& =\lim _{x\to 0}\left(\frac{\sin^2 x \cos x }{\left(\cos x -1\right)}\right) \\
\\
& =\lim _{x\to 0}\left(\frac{\left(1-\cos^2 x \right) \cdot\cos x }{-\left(1-\cos x \right)}\right) \\
\\
& =\lim\limits_{x\to 0}\left(\frac{\left(1+\cos x \right) \left(1-\cos x \right) \cdot\cos x }{-\left(1-\cos x \right)}\right) \\
\\
& =\lim _{x\to 0}\left(\frac{\left(1+\cos x \right) \cdot \cos\left(x\right)}{-1}\right) \\
\\
& =-1\cdot \lim _{x\to 0}\left(\left(1+\cos x\right)\cdot\cos x \right) \\
\\
& =-1\cdot \left(1+\cos 0 \right)\cdot \cos 0 \\
\\
& =-1\cdot \left(1+1\right)\cdot 1 \\
\\
& =-2 \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)
\end{align*}

Advertisements
Advertisements

Differential and Integral Calculus by Feliciano and Uy, Exercise 1.3, Problem 14

Advertisements

PROBLEM:

Evaluate \displaystyle \lim\limits_{x\to \frac{\pi }{4}}\left(\frac{\tan\:2x}{\sec\:2x}\right).


Advertisements

SOLUTION:

A straight substitution of x=\frac{\pi }{4} leads to the indeterminate form \frac{0}{0} which is meaningless.

Therefore, to evaluate the limit of the given function, we proceed as follows

\begin{align*}
\displaystyle \lim\limits_{x\to \:\frac{\pi \:}{4}}\left(\frac{\tan\:2x}{\sec\:2x}\right) & =\lim\limits_{x\to \frac{\pi }{4}}\left(\frac{\frac{\sin\:2x}{\cos\:2x}}{\frac{1}{\cos\:2x}}\right) \\
\\
& =\lim\limits_{x\to \:\frac{\pi \:}{4}}\left(\sin\:2x\right) \\
\\
& =\sin\left(2\cdot \frac{\pi }{4}\right) \\
\\
& =\sin\frac{\pi }{2} \\
\\
& =1 \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)
\end{align*}

Advertisements
Advertisements

Differential and Integral Calculus by Feliciano and Uy, Exercise 1.3, Problem 13

Advertisements

PROBLEM:

Evaluate \displaystyle \lim\limits_{x\to 3}\left(\frac{\sqrt{x^2-9}}{x-3}\right).


Advertisements

SOLUTION:

A straight substitution of x=3 leads to the indeterminate form \frac{0}{0} which is meaningless.

Therefore, to evaluate the limit of the given function, we proceed as follows

\begin{align*}
\lim\limits_{x\to \:3}\left(\frac{\sqrt{x^2-9}}{x-3}\right) & =\lim\limits_{x\to 3}\left(\frac{\sqrt{x^2-9}}{x-3}\cdot \frac{\sqrt{x^2-9}}{\sqrt{x^2-9}}\right) \\
\\
& =\lim\limits_{x\to 3}\left(\frac{\left(x+3\right)\left(x-3\right)}{\left(x-3\right)\sqrt{x^2-9}}\right) \\
\\
& =\lim\limits_{x\to 3}\left(\frac{x^2-9}{\left(x-3\right)\sqrt{x^2-9}}\right) \\
\\
& =\lim _{x\to 3}\left(\frac{x+3}{\sqrt{x^2-9}}\right) \\
\\
& =\frac{3+3}{\sqrt{3^2-9}} \\
\\
& =\frac{6}{0} \\
\\
& =\infty \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)
\end{align*}

Since the function’s limit is different from the left to its limits from the right, the limit does not exist. 


Advertisements
Advertisements

Differential and Integral Calculus by Feliciano and Uy, Exercise 1.3, Problem 12

Advertisements

PROBLEM:

Evaluate \displaystyle \lim\limits_{x\to 0}\left(\frac{1}{x}\left(\frac{1}{3}-\frac{1}{\sqrt{x+9}}\right)\right)


Advertisements

SOLUTION: 

A straight substitution of x=0 leads to the indeterminate form 0\cdot 0 which is meaningless.

Therefore, to evaluate the limit of the given function, we proceed as follows

\begin{align*}
\lim\limits_{x\to \:0}\left(\frac{1}{x}\left(\frac{1}{3}-\frac{1}{\sqrt{x+9}}\right)\right) & =\lim\limits_{x\to 0}\left(\frac{1\cdot \:\left(\frac{1}{3}-\frac{1}{\sqrt{x+9}}\right)}{x}\right) \\ \\
& =\lim\limits_{x\to 0}\left(\frac{\frac{\sqrt{x+9}-3}{3\sqrt{x+9}}}{x}\right) \\ \\
& =\lim\limits_{x\to 0}\left(\frac{\sqrt{x+9}-3}{3x\sqrt{x+9}}\right) \\ \\
& =\lim\limits_{x\to 0}\left(\frac{\sqrt{x+9}-3}{3x\sqrt{x+9}}\right)\cdot \frac{\sqrt{x+9}+3}{\sqrt{x+9}+3} \\ \\
& =\lim\limits_{x\to 0}\left(\frac{x}{3x\left(\sqrt{x+9}+3\right)\sqrt{x+9}}\right) \\ \\
& =\lim\limits_{x\to 0}\left(\frac{1}{3\left(\sqrt{x+9}+3\right)\sqrt{x+9}}\right) \\ \\
& =\frac{1}{3\left(\sqrt{0+9}+3\right)\sqrt{0+9}} \\ \\
& =\frac{1}{54} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)
\end{align*}

Advertisements
Advertisements

Differential and Integral Calculus by Feliciano and Uy, Exercise 1.3, Problem 11

Advertisements

Evaluate \displaystyle \lim\limits_{x\to 3}\left(\frac{x-3}{\sqrt{x-2}-\sqrt{4-x}}\right)


Advertisements

Solution:

A straight substitution of x=3 leads to the indeterminate form \frac{0}{0} which is meaningless.

Therefore, to evaluate the limit of the given function, we proceed as follows.

\begin{align*}
\begin{align*}

\lim\limits_{x\to \:3}\left(\frac{x-3}{\sqrt{x-2}-\sqrt{4-x}}\right) & =\lim\limits_{x\to \:\:3}\left(\frac{x-3}{\sqrt{x-2}-\sqrt{4-x}}\right)\cdot \frac{\sqrt{x-2}+\sqrt{4-x}}{\sqrt{x-2}+\sqrt{4-x}} \\

& =\lim\limits_{x\to 3}\left[\frac{\left(x-3\right)\left(\sqrt{x-2}+\sqrt{4-x}\right)}{\left(\sqrt{x-2}-\sqrt{4-x}\right)\left(\sqrt{x-2}+\sqrt{4-x}\right)}\right] \\

& =\lim\limits_{x\to3}\left[\frac{\left(x-3\right)\left(\sqrt{x-2}+\sqrt{4-x}\right)}{2x-6}\right]\\

& =\lim\limits_{x\to3}\left[\frac{\left(x-3\right)\left(\sqrt{x-2}+\sqrt{-x+4}\right)}{2\left(x-3\right)}\right] \\

& =\lim\limits_{x\to 3}\left[\frac{\sqrt{x-2}+\sqrt{4-x}}{2}\right]\\

& =\frac{\sqrt{3-2}+\sqrt{4-3}}{2}\\

& =1 \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)

\end{align*}
\end{align*}

Advertisements
Advertisements

Differential and Integral Calculus by Feliciano and Uy, Exercise 1.3, Problem 10

Advertisements

PROBLEM:

Evaluate \displaystyle \lim\limits_{x\to 2}\left(\frac{x^3-8}{x^2-4\:}\right)


Advertisements

SOLUTION:

A straight substitution of  x=2 leads to the indeterminate form \frac{0}{0} which is meaningless.

Therefore, to evaluate the limit of the given function, we proceed as follows

\begin{align*}
\lim\limits_{x\to 2}\left(\frac{x^3-8}{x^2-4\:}\right) & =\lim\limits_{x\to 2}\left[\frac{\left(x-2\right)\left(x^2+2x+4\right)}{\left(x+2\right)\left(x-2\right)}\right] \\

&=\lim\limits_{x\to 2}\left[\frac{\left(x^2+2x+4\right)}{\left(x+2\right)}\right] \\

& =\frac{2^2+2\cdot 2+4}{2+2} \\

& =3 \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)
\end{align*}


Advertisements
Advertisements

Differential and Integral Calculus by Feliciano and Uy, Exercise 1.3, Problem 9

Advertisements

PROBLEM:

Evaluate \displaystyle \lim\limits_{x\to 4}\left(\frac{\frac{1}{x}-\frac{1}{4}}{x-4\:}\right).


Advertisements

SOLUTION:

A straight substitution of x=4 leads to the indeterminate form \frac{0}{0} which is meaningless.

Therefore, to evaluate the limit of the given function, we proceed as follows:

\begin{align*}
\\
 \lim\limits_{x\to 4}\left(\frac{\frac{1}{x}-\frac{1}{4}}{x-4}\right)& =\lim\limits_{x\to 4}\left(\frac{\frac{4-x}{4x}}{x-4}\right)\\
\\
& =\lim\limits_{x\to 4}\frac{4-x}{4x\left(x-4\right)}\\
\\

&=\lim\limits_{x\to 4}\left(\frac{4-x}{-4x\left(4-x\right)}\right)\\
\\

& =\lim\limits_{x\to 4}-\frac{1}{4x}\\
\\

& =-\frac{1}{4\cdot 4}\\
\\

& =-\frac{1}{16} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)\\
\\
\end{align*}

Advertisements
Advertisements