Author Archives: Engineering Math

Differential and Integral Calculus by Feliciano and Uy, Exercise 1.3, Problem 16

Advertisements

PROBLEM:

Evaluate limx0(1cos2(x)1+cos(x)) \displaystyle \lim\limits_{x\to 0}\left(\frac{1-\cos^2\left(x\right)}{1+\cos\left(x\right)}\right)


Advertisements

SOLUTION:

This problem can be solved using a direct substitution of x=0x=0. That is

limx0(1cos2x1+cosx)=1cos2(0)1+cos(0)=111+1=0  (Answer)\begin{align*} \lim\limits_{x\to 0}\left(\frac{1-\cos^2 x }{1+\cos x }\right) & =\frac{1-\cos^2\left(0\right)}{1+\cos\left(0\right)} \\ \\ & =\frac{1-1}{1+1}\\ \\ & = 0 \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

Advertisements
Advertisements

Differential and Integral Calculus by Feliciano and Uy, Exercise 1.3, Problem 15

Advertisements

PROBLEM:

Evaluate limx0(sin3xsinxtanx) \displaystyle \lim_{x\to 0}\left(\frac{\sin^3x}{\sin x-\tan x}\right).


Advertisements

SOLUTION:

A straight substitution of x=π4\displaystyle x=\frac{\pi }{4} leads to the indeterminate form 00\displaystyle \frac{0}{0} which is meaningless.

Therefore, to evaluate the limit of the given function, we proceed as follows

limx0(sin3xsinxtanx)=limx0(sin3xsinxsinxcosx)=limx0(sin3xsinxcosxsinxcosx)=limx0(sin3xcosxsinxcosxsinx)=limx0(sin3xcosx(sinx)(cosx1))=limx0(sin2xcosx(cosx1))=limx0((1cos2x)cosx(1cosx))=limx0((1+cosx)(1cosx)cosx(1cosx))=limx0((1+cosx)cos(x)1)=1limx0((1+cosx)cosx)=1(1+cos0)cos0=1(1+1)1=2  (Answer)\begin{align*} \displaystyle \lim _{x\to 0}\left(\frac{\sin^3x}{\sin x-\tan x}\right) & =\lim _{x\to 0}\left(\frac{\sin^3x}{\sin x-\frac{\sin x}{\cos x}}\right) \\ \\ & =\lim _{x\to 0}\left(\frac{\sin^3 x}{\frac{\sin x \cos x - \sin x}{\cos x}}\right) \\ \\ & = \lim _{x\to 0}\left(\frac{\sin^3 x \cos x }{\sin x \cos x - \sin x}\right) \\ \\ &=\lim _{x\to \:0}\left(\frac{\sin^3 x \cos x}{\left(\sin x \right)\left(\cos x-1\right)}\right) \\ \\ & =\lim _{x\to 0}\left(\frac{\sin^2 x \cos x }{\left(\cos x -1\right)}\right) \\ \\ & =\lim _{x\to 0}\left(\frac{\left(1-\cos^2 x \right) \cdot\cos x }{-\left(1-\cos x \right)}\right) \\ \\ & =\lim\limits_{x\to 0}\left(\frac{\left(1+\cos x \right) \left(1-\cos x \right) \cdot\cos x }{-\left(1-\cos x \right)}\right) \\ \\ & =\lim _{x\to 0}\left(\frac{\left(1+\cos x \right) \cdot \cos\left(x\right)}{-1}\right) \\ \\ & =-1\cdot \lim _{x\to 0}\left(\left(1+\cos x\right)\cdot\cos x \right) \\ \\ & =-1\cdot \left(1+\cos 0 \right)\cdot \cos 0 \\ \\ & =-1\cdot \left(1+1\right)\cdot 1 \\ \\ & =-2 \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

Advertisements
Advertisements

Differential and Integral Calculus by Feliciano and Uy, Exercise 1.3, Problem 14

Advertisements

PROBLEM:

Evaluate limxπ4(tan2xsec2x)\displaystyle \lim\limits_{x\to \frac{\pi }{4}}\left(\frac{\tan\:2x}{\sec\:2x}\right).


Advertisements

SOLUTION:

A straight substitution of x=π4x=\frac{\pi }{4} leads to the indeterminate form 00\frac{0}{0} which is meaningless.

Therefore, to evaluate the limit of the given function, we proceed as follows

limxπ4(tan2xsec2x)=limxπ4(sin2xcos2x1cos2x)=limxπ4(sin2x)=sin(2π4)=sinπ2=1  (Answer)\begin{align*} \displaystyle \lim\limits_{x\to \:\frac{\pi \:}{4}}\left(\frac{\tan\:2x}{\sec\:2x}\right) & =\lim\limits_{x\to \frac{\pi }{4}}\left(\frac{\frac{\sin\:2x}{\cos\:2x}}{\frac{1}{\cos\:2x}}\right) \\ \\ & =\lim\limits_{x\to \:\frac{\pi \:}{4}}\left(\sin\:2x\right) \\ \\ & =\sin\left(2\cdot \frac{\pi }{4}\right) \\ \\ & =\sin\frac{\pi }{2} \\ \\ & =1 \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

Advertisements
Advertisements

Differential and Integral Calculus by Feliciano and Uy, Exercise 1.3, Problem 13

Advertisements

PROBLEM:

Evaluate limx3(x29x3)\displaystyle \lim\limits_{x\to 3}\left(\frac{\sqrt{x^2-9}}{x-3}\right).


Advertisements

SOLUTION:

A straight substitution of x=3x=3 leads to the indeterminate form 00\frac{0}{0} which is meaningless.

Therefore, to evaluate the limit of the given function, we proceed as follows

limx3(x29x3)=limx3(x29x3x29x29)=limx3((x+3)(x3)(x3)x29)=limx3(x29(x3)x29)=limx3(x+3x29)=3+3329=60=  (Answer)\begin{align*} \lim\limits_{x\to \:3}\left(\frac{\sqrt{x^2-9}}{x-3}\right) & =\lim\limits_{x\to 3}\left(\frac{\sqrt{x^2-9}}{x-3}\cdot \frac{\sqrt{x^2-9}}{\sqrt{x^2-9}}\right) \\ \\ & =\lim\limits_{x\to 3}\left(\frac{\left(x+3\right)\left(x-3\right)}{\left(x-3\right)\sqrt{x^2-9}}\right) \\ \\ & =\lim\limits_{x\to 3}\left(\frac{x^2-9}{\left(x-3\right)\sqrt{x^2-9}}\right) \\ \\ & =\lim _{x\to 3}\left(\frac{x+3}{\sqrt{x^2-9}}\right) \\ \\ & =\frac{3+3}{\sqrt{3^2-9}} \\ \\ & =\frac{6}{0} \\ \\ & =\infty \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

Since the function’s limit is different from the left to its limits from the right, the limit does not exist. 


Advertisements
Advertisements

Differential and Integral Calculus by Feliciano and Uy, Exercise 1.3, Problem 12

Advertisements

PROBLEM:

Evaluate limx0(1x(131x+9))\displaystyle \lim\limits_{x\to 0}\left(\frac{1}{x}\left(\frac{1}{3}-\frac{1}{\sqrt{x+9}}\right)\right)


Advertisements

SOLUTION: 

A straight substitution of x=0x=0 leads to the indeterminate form 000\cdot 0 which is meaningless.

Therefore, to evaluate the limit of the given function, we proceed as follows

limx0(1x(131x+9))=limx0(1(131x+9)x)=limx0(x+933x+9x)=limx0(x+933xx+9)=limx0(x+933xx+9)x+9+3x+9+3=limx0(x3x(x+9+3)x+9)=limx0(13(x+9+3)x+9)=13(0+9+3)0+9=154  (Answer)\begin{align*} \lim\limits_{x\to \:0}\left(\frac{1}{x}\left(\frac{1}{3}-\frac{1}{\sqrt{x+9}}\right)\right) & =\lim\limits_{x\to 0}\left(\frac{1\cdot \:\left(\frac{1}{3}-\frac{1}{\sqrt{x+9}}\right)}{x}\right) \\ \\ & =\lim\limits_{x\to 0}\left(\frac{\frac{\sqrt{x+9}-3}{3\sqrt{x+9}}}{x}\right) \\ \\ & =\lim\limits_{x\to 0}\left(\frac{\sqrt{x+9}-3}{3x\sqrt{x+9}}\right) \\ \\ & =\lim\limits_{x\to 0}\left(\frac{\sqrt{x+9}-3}{3x\sqrt{x+9}}\right)\cdot \frac{\sqrt{x+9}+3}{\sqrt{x+9}+3} \\ \\ & =\lim\limits_{x\to 0}\left(\frac{x}{3x\left(\sqrt{x+9}+3\right)\sqrt{x+9}}\right) \\ \\ & =\lim\limits_{x\to 0}\left(\frac{1}{3\left(\sqrt{x+9}+3\right)\sqrt{x+9}}\right) \\ \\ & =\frac{1}{3\left(\sqrt{0+9}+3\right)\sqrt{0+9}} \\ \\ & =\frac{1}{54} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

Advertisements
Advertisements

Differential and Integral Calculus by Feliciano and Uy, Exercise 1.3, Problem 11

Advertisements

Evaluate limx3(x3x24x) \displaystyle \lim\limits_{x\to 3}\left(\frac{x-3}{\sqrt{x-2}-\sqrt{4-x}}\right)


Advertisements

Solution:

A straight substitution of x=3x=3 leads to the indeterminate form 00\frac{0}{0} which is meaningless.

Therefore, to evaluate the limit of the given function, we proceed as follows.

limx3(x3x24x)=limx  3(x3x24x)x2+4xx2+4x=limx3[(x3)(x2+4x)(x24x)(x2+4x)]=limx3[(x3)(x2+4x)2x6]=limx3[(x3)(x2+x+4)2(x3)]=limx3[x2+4x2]=32+432=1  (Answer)\begin{align*} \begin{align*} \lim\limits_{x\to \:3}\left(\frac{x-3}{\sqrt{x-2}-\sqrt{4-x}}\right) & =\lim\limits_{x\to \:\:3}\left(\frac{x-3}{\sqrt{x-2}-\sqrt{4-x}}\right)\cdot \frac{\sqrt{x-2}+\sqrt{4-x}}{\sqrt{x-2}+\sqrt{4-x}} \\ & =\lim\limits_{x\to 3}\left[\frac{\left(x-3\right)\left(\sqrt{x-2}+\sqrt{4-x}\right)}{\left(\sqrt{x-2}-\sqrt{4-x}\right)\left(\sqrt{x-2}+\sqrt{4-x}\right)}\right] \\ & =\lim\limits_{x\to3}\left[\frac{\left(x-3\right)\left(\sqrt{x-2}+\sqrt{4-x}\right)}{2x-6}\right]\\ & =\lim\limits_{x\to3}\left[\frac{\left(x-3\right)\left(\sqrt{x-2}+\sqrt{-x+4}\right)}{2\left(x-3\right)}\right] \\ & =\lim\limits_{x\to 3}\left[\frac{\sqrt{x-2}+\sqrt{4-x}}{2}\right]\\ & =\frac{\sqrt{3-2}+\sqrt{4-3}}{2}\\ & =1 \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*} \end{align*}

Advertisements
Advertisements

Differential and Integral Calculus by Feliciano and Uy, Exercise 1.3, Problem 10

Advertisements

PROBLEM:

Evaluate limx2(x38x24)\displaystyle \lim\limits_{x\to 2}\left(\frac{x^3-8}{x^2-4\:}\right)


Advertisements

SOLUTION:

A straight substitution of  x=2x=2 leads to the indeterminate form 00 \frac{0}{0} which is meaningless.

Therefore, to evaluate the limit of the given function, we proceed as follows

limx2(x38x24)=limx2[(x2)(x2+2x+4)(x+2)(x2)]=limx2[(x2+2x+4)(x+2)]=22+22+42+2=3  (Answer)\begin{align*} \lim\limits_{x\to 2}\left(\frac{x^3-8}{x^2-4\:}\right) & =\lim\limits_{x\to 2}\left[\frac{\left(x-2\right)\left(x^2+2x+4\right)}{\left(x+2\right)\left(x-2\right)}\right] \\ &=\lim\limits_{x\to 2}\left[\frac{\left(x^2+2x+4\right)}{\left(x+2\right)}\right] \\ & =\frac{2^2+2\cdot 2+4}{2+2} \\ & =3 \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}


Advertisements
Advertisements

Differential and Integral Calculus by Feliciano and Uy, Exercise 1.3, Problem 9

Advertisements

PROBLEM:

Evaluate limx4(1x14x4)\displaystyle \lim\limits_{x\to 4}\left(\frac{\frac{1}{x}-\frac{1}{4}}{x-4\:}\right).


Advertisements

SOLUTION:

A straight substitution of x=4x=4 leads to the indeterminate form 00\frac{0}{0} which is meaningless.

Therefore, to evaluate the limit of the given function, we proceed as follows:

limx4(1x14x4)=limx4(4x4xx4)=limx44x4x(x4)=limx4(4x4x(4x))=limx414x=144=116  (Answer)\begin{align*} \\ \lim\limits_{x\to 4}\left(\frac{\frac{1}{x}-\frac{1}{4}}{x-4}\right)& =\lim\limits_{x\to 4}\left(\frac{\frac{4-x}{4x}}{x-4}\right)\\ \\ & =\lim\limits_{x\to 4}\frac{4-x}{4x\left(x-4\right)}\\ \\ &=\lim\limits_{x\to 4}\left(\frac{4-x}{-4x\left(4-x\right)}\right)\\ \\ & =\lim\limits_{x\to 4}-\frac{1}{4x}\\ \\ & =-\frac{1}{4\cdot 4}\\ \\ & =-\frac{1}{16} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)\\ \\ \end{align*}

Advertisements
Advertisements

Introduction to Statistics and Data Analysis | Probability & Statistics for Engineers & Scientists 8th Ed | Walpole| Problem 1.2

According to the journal Chemical Engineering, an important property of a fiber is its water absorbency. A random sample of 20 pieces of cotton fiber is taken and the absorbency on each piece was measured. The following are the absorbency values:

18.71 21.41 20.72 21.81 19.29 22.43 20.17
23.71 19.44 20.50 18.92 20.33 23.00 22.85
19.25 21.77 22.11 19.77 18.04 21.12  

a. Calculate the sample mean and median for the above sample values.

b. Compute the 10% trimmed mean.

c. Do a dot plot of the absorbency data. 

Continue reading

Problem 1-2|Stress | Mechanics of Materials| Ninth Edition| R.C. Hibbeler|

Determine the resultant internal normal and shear force in the member at (a) section a–a and (b) section b–b, each of which passes through point A. The 500-lb load is applied along the centroidal axis of the member.

Problem 1-2

Continue reading