Author Archives: Engineering Math

Differential and Integral Calculus by Feliciano and Uy, Exercise 1.3, Problem 1

Advertisements

PROBLEM:

Evaluate \displaystyle \lim\limits_{x\to 4}\left(\frac{x^3-64}{x^2-16}\right)


Advertisements

SOLUTION:

A straight substitution of  x=4 leads to the indeterminate form  \frac{0}{0} which is meaningless.

Therefore, to evaluate the limit of the given function, we proceed as follows

\begin{align*}

\lim\limits_{x\to 4}\left(\frac{x^3-64}{x^2-16}\right)& =\lim\limits_{x\to 4}\left(\frac{\left(x-4\right)\left(x^2+4x+16\right)}{\left(x+4\right)\left(x-4\right)}\right)\\
\\
& =\lim\limits_{x\to 4}\left(\frac{x^2+4x+16}{x+4}\right)\\
\\
& =\frac{\left(4\right)^2+4\left(4\right)+16}{4+4}\\
\\
& =\frac{48}{8}\\
\\
& =6 \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)\\
\\
\end{align*}

Advertisements
Advertisements

College Physics by Openstax Chapter 2 Problem 36


An express train passes through a station. It enters with an initial velocity of 22.0 m/s and decelerates at a rate of  0.150 m/s2 as it goes through.  The station is 210 m long.

(a) How long is the nose of the train in the station?

(b) How fast is it going when the nose leaves the station?

(c) If the train is 130 m long, when does the end of the train leave the station?

(d) What is the velocity of the end of the train as it leaves?


Solution:

Part A

We are given the following: v_0=22.0\:\text{m/s}; a=-0.150\:\text{m/s}^2; and \Delta x=210\:\text{m}

We are required to solve for time, t. We are going to use the formula

\Delta x=v_0t+\frac{1}{2}at^2

Substituting the given values, we have

\begin{align*}
\Delta x & =v_0t+\frac{1}{2}at^2 \\
210\:\text{m} & =\left(22.0\:\text{m/s}\right)t+\frac{1}{2}\left(-0.150\:\text{m/s}^2\right)t^2
\end{align*}

If we simplify and rearrange the terms into a general quadratic equation, we have

0.075t^2-0.22t+210=0

Solve for t using the quadratic formula. We are given a=0.075;\:b=-22t;\:c=210.

\begin{align*}
t & =\frac{-b\pm \sqrt{b^2-4ac}}{2a} \\
t& =\frac{-\left(-22\right)\pm \sqrt{\left(-22\right)^2-4\left(0.075\right)\left(210\right)}}{2\left(0.075\right)}\\
\end{align*}

There are two values of t that can satisfy the quadratic equation.

t=9.88\ \text{s} \qquad \text{and} \qquad t=283.46 \ \text{s}

Discard t=283.46 \ \text{s} as it can be seen from the problem that this is not a feasible solution. So, we have

t=9.88\:\text{s} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)

Part B

We have the same given values from part a. We are going to solve v_f in the formula

\left(v_f\right)^2=\left(v_0\right)^2+2a\Delta x

So we have

\begin{align*}
\left(v_f\right)^2 & =\left(v_0\right)^2+2a\Delta x \\
v_f & =\sqrt{\left(v_0\right)^2+2a\Delta x} \\
v_f & =\sqrt{\left(22.0\:\text{m/s}\right)^2+2\left(-0.150\:\text{m/s}^2\right)\left(210\:\text{m}\right)} \\
v_f & =20.6\:\text{m/s} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)
\end{align*}

Part C

We are given the same values as in the previous parts, except that for the value of \Delta x since we should incorporate the length of the train. For the distance, \Delta x, we have

\begin{align*}
\Delta x & =210\:\text{m}+130\:\text{m} \\
\Delta x & = 340 \ \text{m}
\end{align*}

To solve for time t, we are going to use the formula

\Delta x=v_ot+\frac{1}{2}at^2

If we rearrange the formula into a general quadratic equation and solve for t using the quadratic formula, we come up with

t=\frac{-v_0\pm \sqrt{v_0^2+2ax}}{a}

Substituting the given values:

\begin{align*}
t & =\frac{-v_0\pm \sqrt{v_0^2+2ax}}{a} \\
t & =\frac{-\left(22.0\:\text{m/s}\right)\pm \sqrt{\left(22.0\:\text{m/s}\right)^2+2\left(-0.150\:\text{m/s}^2\right)\left(340\:\text{m}\right)}}{-0.150\:\text{m/s}^2} \\
t &=16.4\:\text{s} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)
\end{align*}

Part D

We have the same given values. We are going to solve for v_f in the equation

\left(v_f\right)^2=\left(v_0\right)^2+2a\Delta x

Substituting the given values:

\begin{align*}
\left(v_f\right)^2 & =\left(v_0\right)^2+2a\Delta x \\
v_f & =\sqrt{\left(v_0\right)^2+2a\Delta x} \\
v_f & =\sqrt{\left(22.0\:\text{m/s}\right)^2+2\left(-0.150\:\text{m/s}^2\right)\left(340\:\text{m}\right)} \\
v_f & =19.5\:\text{m/s} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)
\end{align*}

Advertisements
Advertisements

Differential and Integral Calculus by Feliciano and Uy, Exercise 1.2, Problem 8

Advertisements

PROBLEM:

Evaluate \displaystyle \lim\limits_{x\to 0}\left(\frac{3x+2}{x^2-2x+4}\right).


Advertisements

SOLUTION:

Plug in the value x=0.

\begin{align*}

\lim\limits_{x\to 0}\left(\frac{3x+2}{x^2-2x+4}\right)& =\frac{3\left(0\right)+2}{\left(0\right)^2-2\left(0\right)+4}\\
\\
& =\frac{0+2}{0-0+4}\\
\\
& =\frac{2}{4}\\
\\
& =\frac{1}{2} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)\\
\\

\end{align*}

Advertisements
Advertisements

Differential and Integral Calculus by Feliciano and Uy, Exercise 1.2, Problem 7

Advertisements

PROBLEM:

Evaluate \displaystyle \lim\limits_{x\to 3}\left(\frac{\sqrt{3x}}{x\sqrt{x+1}}\right).


Advertisements

SOLUTION:

Plug the value x=3.

\begin{align*}

\lim\limits_{x\to 3}\left(\frac{\sqrt{3x}}{x\sqrt{x+1}}\right)&=\frac{\sqrt{3\left(3\right)}}{3\sqrt{3+1}} \\
\\
&=\frac{\sqrt{9}}{3\sqrt{4}} \\
\\
& =\frac{3}{3\cdot 2}\\
\\
& =\frac{3}{6}\\
\\
&=\frac{1}{2} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)\\
\\
\end{align*}

Advertisements
Advertisements

Differential and Integral Calculus by Feliciano and Uy, Exercise 1.2, Problem 6

Advertisements

PROBLEM:

Evaluate \displaystyle \lim_{x\to 2}\left(4x-3\right)\left(x^2+5\right).


Advertisements

SOLUTION:

Plug the value x=2.

\begin{align*}

\lim\limits_{x\to 2}\left(4x-3\right)\left(x^2+5\right) & =\left[\left(4\cdot 2\right)-3\right]\left[\left(2\right)^2+5\right]\\

& =\left[8-3\right]\left[4+5\right]\\

& =\left(5\right)\left(9\right)\\

& =45 \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)\\

\end{align*}

Advertisements
Advertisements

Differential and Integral Calculus by Feliciano and Uy, Exercise 1.2, Problem 5

Advertisements

PROBLEM:

Evaluate \displaystyle \lim\limits_{x\to 8}\left(2x+\sqrt[3]{x}-4\right).


Advertisements

SOLUTION:

Plug in the value x=8.

\begin{align*}

\lim\limits_{x\to 8}\left(2x+\sqrt[3]{x}-4\right) & = \left[2\left(8\right)+\sqrt[3]{8}-4\right]\\
& =\left[16+2-4\right]\\
& =14 \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)\\

\end{align*}

Advertisements
Advertisements

Differential and Integral Calculus by Feliciano and Uy, Exercise 1.2, Problem 4

Advertisements

PROBLEM:

Evaluate \displaystyle \lim\limits _{x\to \frac{\pi }{3}}\left(\frac{\sin\:2x}{\sin\:x}\right).


Advertisements

SOLUTION:

Plug in the value \displaystyle x=\frac{\pi }{3}.

\begin{align*}

\lim\limits_{x\to \frac{\pi }{3}}\left(\frac{\sin\:2x}{\sin\:x}\right) & =\frac{\sin\left(2\cdot \frac{\pi }{3}\right)}{\sin\:\left(\frac{\pi }{3}\right)} \\

& =\frac{\frac{\sqrt{3}}{2}}{\frac{\sqrt{3}}{2}}\\

& =1 \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)\\

\end{align*}

Advertisements
Advertisements

College Physics by Openstax Chapter 2 Problem 35


Consider a grey squirrel falling out of a tree to the ground.

(a) If we ignore air resistance in this case (only for the sake of this problem), determine a squirrel’s velocity just before hitting the ground, assuming it fell from a height of 3.0 m.

(b) If the squirrel stops in a distance of 2.0 cm through bending its limbs, compare its deceleration with that of the airman in the previous problem.


Solution:

Part A

We are given the following: v_0=0 \ \text{m/s}; a=-9.80 \ \text{m/s}^2; and \Delta x=-3.0\ \text{m}.

Note that the acceleration is due to gravity and its value is constant at a=-9.80 \ \text{m/s}^2. Also, the distance x, is negative because of the direction of motion. For free-fall, downward motion is considered negative. To solve for the velocity just before it hits the ground, we will solve v_fin the formula

\left(v_f\right)^2=\left(v_0\right)^2+2a\Delta x

Substituting the given values:

\begin{align*}
\left(v_f\right)^2 & =\left(v_0\right)^2+2a\Delta x \\
v_f & =\sqrt{\left(v_0\right)^2+2a\Delta x} \\
v_f & = \sqrt{\left(0\:\text{m/s}\right)^2+2\left(-9.80\:\text{m/s}^2\right)\left(-3.0\:\text{m}\right)} \\
v_f & = 7.7\:\text{m/s} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)
\end{align*}

Part B

We are given the following: v_f=0 \ \text{m/s}; v_0=7.7 \ \text{m/s}; and \Delta x=0.02 \ \text{m}

To solve for the acceleration we shall use the same formula as that in Part A. Solving for the acceleration a:

a=\frac{\left(v_f\right)^2-\left(v_0\right)^2}{2\Delta x}

Substituting the given values:

\begin{align*}
a & =\frac{\left(v_f\right)^2-\left(v_0\right)^2}{2\Delta x} \\
a & =\frac{\left(0\:\text{m/s}\right)^2-\left(7.7\:\text{m/s}\right)^2}{2\left(0.02\:\text{m}\right)} \\
a & =-1.5\times 10^3\:\text{m/s}^2 \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)
\end{align*}

This is approximately 3 times the deceleration of the airman from the previous problem, who was falling from thousands of meters high.


Advertisements
Advertisements

College Physics by Openstax Chapter 2 Problem 34


In World War II, there were several reported cases of airmen who jumped from their flaming airplanes with no parachute to escape certain death. Some fell about 20,000 feet (6000 m), and some of them survived, with few life-threatening injuries. For these lucky pilots, the tree branches and snow drifts on the ground allowed their deceleration to be relatively small. If we assume that a pilot’s speed upon impact was 123 mph (54 m/s), then what was his deceleration? Assume that the trees and snow stopped him over a distance of 3.0 m.


Solution:

We are given the following: x=3\ \text{m}; v_0=54\ \text{m/s}; and v_f=0 \ \text{m/s}.

We are required to solve for the acceleration, and we are going to use the formula

\left(v_f\right)^2=\left(v_0\right)^2+2a\Delta x

Solving for acceleration a in terms of the other variables:

a=\frac{\left(v_f\right)^2-\left(v_0\right)^2}{2\Delta x}

Substituting the given values:

\begin{align*}
a & = \frac{\left(v_f\right)^2-\left(v_0\right)^2}{2\Delta x} \\
a & =\frac{\left(0\:\text{m/s}\right)^2-\left(54\:\text{m/s}\right)^2}{2\left(3.0\:\text{m}\right)} \\
a & =-486\:\text{m/s}^2 \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)
\end{align*}

The negative acceleration means that the pilot was decelerating at a rate of 486 m/s every second.


Advertisements
Advertisements