Author Archives: Engineering Math

College Physics by Openstax Chapter 2 Problem 35


Consider a grey squirrel falling out of a tree to the ground.

(a) If we ignore air resistance in this case (only for the sake of this problem), determine a squirrel’s velocity just before hitting the ground, assuming it fell from a height of 3.0 m.

(b) If the squirrel stops in a distance of 2.0 cm through bending its limbs, compare its deceleration with that of the airman in the previous problem.


Solution:

Part A

We are given the following: v_0=0 \ \text{m/s}; a=-9.80 \ \text{m/s}^2; and \Delta x=-3.0\ \text{m}.

Note that the acceleration is due to gravity and its value is constant at a=-9.80 \ \text{m/s}^2. Also, the distance x, is negative because of the direction of motion. For free-fall, downward motion is considered negative. To solve for the velocity just before it hits the ground, we will solve v_fin the formula

\left(v_f\right)^2=\left(v_0\right)^2+2a\Delta x

Substituting the given values:

\begin{align*}
\left(v_f\right)^2 & =\left(v_0\right)^2+2a\Delta x \\
v_f & =\sqrt{\left(v_0\right)^2+2a\Delta x} \\
v_f & = \sqrt{\left(0\:\text{m/s}\right)^2+2\left(-9.80\:\text{m/s}^2\right)\left(-3.0\:\text{m}\right)} \\
v_f & = 7.7\:\text{m/s} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)
\end{align*}

Part B

We are given the following: v_f=0 \ \text{m/s}; v_0=7.7 \ \text{m/s}; and \Delta x=0.02 \ \text{m}

To solve for the acceleration we shall use the same formula as that in Part A. Solving for the acceleration a:

a=\frac{\left(v_f\right)^2-\left(v_0\right)^2}{2\Delta x}

Substituting the given values:

\begin{align*}
a & =\frac{\left(v_f\right)^2-\left(v_0\right)^2}{2\Delta x} \\
a & =\frac{\left(0\:\text{m/s}\right)^2-\left(7.7\:\text{m/s}\right)^2}{2\left(0.02\:\text{m}\right)} \\
a & =-1.5\times 10^3\:\text{m/s}^2 \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)
\end{align*}

This is approximately 3 times the deceleration of the airman from the previous problem, who was falling from thousands of meters high.


Advertisements
Advertisements

College Physics by Openstax Chapter 2 Problem 34


In World War II, there were several reported cases of airmen who jumped from their flaming airplanes with no parachute to escape certain death. Some fell about 20,000 feet (6000 m), and some of them survived, with few life-threatening injuries. For these lucky pilots, the tree branches and snow drifts on the ground allowed their deceleration to be relatively small. If we assume that a pilot’s speed upon impact was 123 mph (54 m/s), then what was his deceleration? Assume that the trees and snow stopped him over a distance of 3.0 m.


Solution:

We are given the following: x=3\ \text{m}; v_0=54\ \text{m/s}; and v_f=0 \ \text{m/s}.

We are required to solve for the acceleration, and we are going to use the formula

\left(v_f\right)^2=\left(v_0\right)^2+2a\Delta x

Solving for acceleration a in terms of the other variables:

a=\frac{\left(v_f\right)^2-\left(v_0\right)^2}{2\Delta x}

Substituting the given values:

\begin{align*}
a & = \frac{\left(v_f\right)^2-\left(v_0\right)^2}{2\Delta x} \\
a & =\frac{\left(0\:\text{m/s}\right)^2-\left(54\:\text{m/s}\right)^2}{2\left(3.0\:\text{m}\right)} \\
a & =-486\:\text{m/s}^2 \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)
\end{align*}

The negative acceleration means that the pilot was decelerating at a rate of 486 m/s every second.


Advertisements
Advertisements

College Physics by Openstax Chapter 2 Problem 33


An unwary football player collides with a padded goalpost while running at a velocity of 7.50 m/s and comes to a full stop after compressing the padding and his body 0.350 m.

a) What is his deceleration?

b) How long does the collision last?


Solution:

We are given the following: v_0=7.50\:\text{m/s}; v_f=0.00\:\text{m/s}; and\Delta x=0.350\:\text{m}.

Part A

We are going to use the formula

\left(v_f\right)^2=\left(v_0\right)^2+2a\Delta x

Solving for the acceleration a in terms of the other variables:

a=\frac{\left(v_f\right)^2-\left(v_0\right)^2}{2\Delta x}

Substituting the given values:

\begin{align*}
a & =\frac{\left(v_f\right)^2-\left(v_0\right)^2}{2\Delta x} \\
a & =\frac{\left(0\:\text{m/s}\right)^2-\left(7.50\:\text{m/s}\right)^2}{2\left(0.350\:\text{m}\right)} \\
a & =-80.4\:\text{m/s}^2 \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)
\end{align*}

Part B

We are going to use the formula

\Delta x=v_{ave}t

Since v_{ave}=\frac{v_f+v_0}{2}, we can write the formula as

\Delta x=\frac{v_f+v_0}{2}\cdot t

Solving for time t in terms of the other variables:

\:t=\frac{2\Delta x}{v_f+v_0}

Substituting the given values:

\begin{align*}
t&=\frac{2\Delta x}{v_f+v_0} \\
t&=\frac{2\left(0.350\:\text{m}\right)}{0\:\text{m/s}+7.50\:\text{m/s}} \\
t& =9.33\times 10^{-2}\:\text{s} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)
\end{align*}

Advertisements
Advertisements

College Physics by Openstax Chapter 2 Problem 32


A woodpecker’s brain is specially protected from large decelerations by tendon-like attachments inside the skull. While pecking on a tree, the woodpecker’s head comes to a stop from an initial velocity of 0.600 m/s in a distance of only 2.00 mm.

a) Find the acceleration in m/s2 and in multiples of g (g=9.80 m/s2).

b) Calculate the stopping time.

c) The tendons cradling the brain stretch, making its stopping distance 4.50 mm (greater than the head and, hence, less deceleration of the brain). What is the brain’s deceleration, expressed in multiples of g?


Solution:

We are given the following values: v_0=0.600 \ \text{m/s}; v_f=0.000\:\text{m/s}; and \Delta x=0.002\:\text{m}.

Part A

The acceleration is computed based on the formula,

\left(v_f\right)^2=\left(v_0\right)^2+2a\Delta x

Solving for acceleration a in terms of the other variables, we have

a=\frac{\left(v_f\right)^2-\left(v_0\right)^2}{2\Delta x}

Substituting the given values,

\begin{align*}
a & =\frac{\left(v_f\right)^2-\left(v_0\right)^2}{2\Delta x} \\
a & =\frac{\left(0.000\:\text{m/s}\right)^2-\left(0.600\:\text{m/s}\right)^2}{2\left(0.002\:\text{m}\right)} \\
a & =-90.0\:\text{m/s}^2 \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)
\end{align*}

In terms of g taking absolute values of the acceleration , we have

\begin{align*}
a & = 90.0 \ \text{m/s}^2 \cdot \left( \frac{g}{9.80 \ \text{m/s}^2} \right) \\
a & = \frac{90.0}{9.80}g \\
a & = 9.18g \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)
\end{align*}

Part B

We shall use the formula

\Delta x=v_{ave}t

where v_{ave} is the average velocity computed as

v_{ave}=\frac{v_0+v_f}{2}

Solving for time t in terms of the other variables, we have

t=\frac{2\Delta x}{v_0+v_f}

Substituting the given values, we have

\begin{align*}
t & =\frac{2\Delta x}{v_0+v_f} \\
t & =\frac{2\left(0.002\:\text{m}\right)}{0.600\:\text{m/s}+0.000\:\text{m/s}} \\
t & =6.67\times 10^{-3}\:\text{s}  \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)
\end{align*}

Part C

Employing the same formula we used in Part A, we have

\begin{align*}
a & =\frac{\left(v_f\right)^2-\left(v_0\right)^2}{2\Delta x} \\
a & =\frac{\left(0.000\:\text{m/s}\right)^2-\left(0.600\:\text{m/s}\right)^2}{2\left(0.0045\:\text{m}\right)} \\
a & =-40.0\:\text{m/s}^2 
\end{align*}

In terms of g, taking absolute values of the acceleration

\begin{align*}
a & = 40.0 \ \text{m/s}^2 \cdot \left( \frac{g}{9.80 \ \text{m/s}^2} \right) \\
a & =\frac{40.0}{9.80}g \\
a & = 4.08g \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)
\end{align*}

Advertisements
Advertisements

Mechanics of Materials 3rd Edition by Timothy A. Philpot, P1.2


A 2024-T4 aluminum tube with an outside diameter of 2.50 in. will be used to support a 27-kip load. If the axial normal stress in the member must be limited to 18 ksi, determine the wall thickness required for the tube.


Solution:

From the definition of normal stress, solve for the minimum area required to support a 27-kip load without exceeding a stress of 18 ksi

\displaystyle \sigma =\frac{P}{A}

\displaystyle A_{min}=\frac{P}{\sigma }

\displaystyle A_{min}=\frac{27\:kips}{18\:ksi}

\displaystyle A_{min}=1.500\:in.^2

The cross-sectional area of the aluminum tube is given by

\displaystyle A=\frac{\pi }{4}\left(D^2-d^2\right)

Set this expression equal to the minimum area and solve for the maximum inside diameter

\displaystyle \frac{\pi }{4}\left[\left(2.50\:in\right)^2-d^2\right]=1.500\:in^2

\displaystyle \left(2.50\:in\right)^2-d^2=\frac{4}{\pi }\left(1.500\:in^2\right)

\displaystyle \left(2.50\:in\right)^2-\frac{4}{\pi }\left(1.500\:in^2\right)=d^2

\displaystyle d_{max}=2.08330\:in

The outside diameter D, the inside diameter d, and the wall thickness t are related by 

D=d+2t

Therefore, the minimum wall thickness required for the aluminum tube is 

\displaystyle t_{min}=\frac{D-d}{2}

\displaystyle t_{min}=\frac{2.50\:in-2.08330\:in}{2}

\displaystyle t_{min}=0.20835\:in

\displaystyle t_{min}=0.208\:in


Advertisements

Maximum Load of a Member | Stress | Mechanics of Materials | 3rd Edition | Timothy Philpot | Problem P1.1


A stainless steel tube with an outside diameter of 60 mm and a wall thickness of 5 mm is used as a compression member. If the axial normal stress in the member must be limited to 200 MPa, determine the maximum load P that the member can support.


SOLUTION:

The cross-sectional area of the stainless steel tube is

\displaystyle A=\frac{\pi }{4}\left(D^2-d^2\right)

\displaystyle A=\frac{\pi }{4}\left[\left(60\:mm\right)^2-\left(50\:mm\right)^2\right]

\displaystyle A=863.938\:mm^2

The normal stress in the tube can be expressed as 

\displaystyle \sigma =\frac{P}{A}

The maximum normal stress in the tube must be limited to 200 MPa. Using 200 MPa as the allowable normal stress, rearrange this expression to solve for the maximum load P.

\displaystyle P_{max}=\sigma _{max}A

\displaystyle P_{max}=\left(200\:MPa\right)\left(863.938\:mm^2\right)

\displaystyle P_{max}=\left(200\:\frac{N}{mm^2}\right)\left(863.938\:mm^2\right)

\displaystyle P_{max}=172\:788\:N

\displaystyle P_{max}=172.8\:kN


Advertisements

Differential and Integral Calculus by Feliciano and Uy, Exercise 1.2, Problem 3

Advertisements

PROBLEM:

Evaluate \displaystyle \lim\limits_{x\to \frac{\pi }{4}}\left(\tan\:x+\sin\:x\right).


Advertisements

SOLUTION:

\begin{align*}

\lim\limits_{x\to \frac{\pi }{4}}\left(\tan\:x+\sin\:x\right) & =\lim\limits_{x\to \frac{\pi }{4}}\left(\tan\:x\right)+\lim\limits_{x\to \frac{\pi }{4}}\left(\sin\:x\right)\\

& =\tan\:\frac{\pi }{4}+\sin\:\frac{\pi }{4}\\

& =1+\frac{\sqrt{2}}{2}\\

& =\frac{2+\sqrt{2}}{2} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)\\

\end{align*}

Advertisements
Advertisements

Differential and Integral Calculus by Feliciano and Uy, Exercise 1.2, Problem 2

Advertisements

PROBLEM:

Evaluate \displaystyle \lim\limits_{x\to 3}\left(\frac{4x+2}{x+4}\right).


Advertisements

SOLUTION:

\begin{align*}

\lim_{x\to 3}\left(\frac{4x+2}{x+4}\right)& =\frac{\lim\limits_{x\to 3}\left(4x+2\right)}{\lim\limits_{x\to 3}\left(x+4\right)}\\

& =\frac{\lim\limits_{x\to 3}\left(4x\right)+\lim\limits_{x\to 3}\left(2\right)}{\lim\limits_{x\to 3}\left(x\right)+\lim\limits_{x\to 3}\left(4\right)}\\

& =\frac{4\cdot \lim\limits_{x\to 3}\left(x\right)+2}{3+4}\\

& =\frac{4\cdot 3+2}{3+4}\\

& =\frac{12+2}{7}\\

& =\frac{14}{7}\\

& =2 \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)\\

\end{align*}

Advertisements
Advertisements

Differential and Integral Calculus by Feliciano and Uy, Exercise 1.2, Problem 1

Advertisements

PROBLEM:

Evaluate \displaystyle \lim _{x\to 2}\left(x^2-4x+3\right).


Advertisements

SOLUTION:

\begin{align*}

\lim_{x\to 2}\left(x^2-4x+3\right)& = \lim_{x\to 2}\left(x^2\right)-\lim_{x\to 2}\left(4x\right)+\lim_{x\to 2}\left(3\right)\\

& =\left[\lim_{x\to 2}\left(x\right)\right]^2-4\lim_{x\to 2}\left(x\right)+3\\

& =\left(2\right)^2-4\left(2\right)+3\\

& =-1 \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)\\

\end{align*}

Advertisements
Advertisements

Differential and Integral Calculus by Feliciano and Uy, Exercise 1.1, Problem 10

Advertisements

PROBLEM:

If  \displaystyle f\left(x\right)=\frac{4}{x+3} and \displaystyle \:g\left(x\right)=x^2-3 , find \displaystyle f\left[g\left(x\right)\right] and \displaystyle g\left[f\left(x\right)\right].


Advertisements

SOLUTION:

Part A

\begin{align*}

f\left[g\left(x\right)\right] & =\frac{4}{\left(x^2-3\right)+3}\\

& =\frac{4}{x^2} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)\\

\end{align*}

Part B

\begin{align*}

g\left[f\left(x\right)\right] & =\left(\frac{4}{x+3}\right)^2-3\\

& =\frac{16}{\left(x+3\right)^2}-3\\

& =\frac{16-3\left(x+3\right)^2}{\left(x+3\right)^2}\\

& =\frac{16-3\left(x^2+6x+9\right)}{\left(x+3\right)^2}\\

& =\frac{16-3x^2-18x-27}{\left(x+3\right)^2}\\

& =\frac{-3x^2-18x-11}{\left(x+3\right)^2} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)\\

\end{align*}

Advertisements
Advertisements