Author Archives: kylavisconde

Elementary Differential Equations by Dela Fuente, Feliciano, and Uy Chapter 10 Problem 12 — Applications of Ordinary First-Ordered Differential Equations


A bacterial population follows the law of exponential growth. If between noon and 2 p.m. the population triples, at what time should the population become 100 times what it was at noon? At 10 a.m. what percentage was present?


SOLUTION:

First, we denote

P as the population of bacteria at anytime

Po as the original bacterial population

t = 0 (12 noon)

t = 2 (2 p.m.)

Let us determine the given and the required

GIVEN:

@12nn to 2p.m.; P= 3Po

REQUIRED:

  1. what time should the population become 100 times
  2. at noon
  3. percentage at 10 a.m.

Using the formula of Applications of Ordinary First-Ordered Differential Equations under Exponential Growth or Decay

dPdt=kPdPP=kdtelnP=ekt+CP=Cekt     (Eq.1)@t=0;P=PoPo=CektPo=Cek(0)Po=C\frac{dP}{dt}=kP \\ \int \:\frac{dP}{P}=\int \:kdt\\ e^{ln\:P}\:=\:e^{kt\:+\:C}\\ P=\:Ce^{kt}\:\:\:\:\:(Eq.1)\\ @t=0; P=P_o\\ P_o=Ce^{kt}\\ P_o=Ce^{k\left(0\right)}\\ P_o = C

Substituting to Eq.1., we get

P=Poekt       (Eq.2)P=\:P_{o\:}e^{kt}\:\:\:\:\:\:\:(Eq.2)

Then from the given condition, from 12 noon to 2 p.m., the population triples (using Eq.2), we will solve for the value of k

@t=2;P=3PoP=Poekt3Po=Poek(2)k=0.54931@t= 2\:;\:P= 3P_o\\ P=\:P_{o\:}e^{kt}\\ 3P_{o\:}=\:P_{o\:}e^{k\left(2\right)}\\ k=0.54931

We will then come up with the working equation (WE), this will help us solve the required problems

P=Poe(0.54931)tP_{\:}=\:P_{o\:}e^{\left(0.54931\right)t}

1.) what time should the population become 100 times

Using WE,

t=?  ;  P=100PoP=Poe(0.54931)t100Po=Poe(0.54931)tt=8.38hrs.t=8:22:48p.m.  or8:23p.m.t=?\:\:;\:\:P=100P_o\\ P_{\:}=\:P_{o\:}e^{\left(0.54931\right)t}\\ 100P_{o\:}=\:P_{o\:}e^{\left(0.54931\right)t}\\ t=8.38\: hrs.\\ t= 8:22:48\: p.m. \; or\:8:23\:p.m.

2.) at noon

P=PoP=P_o

3.) percentage at 10 a.m.

@10a.m.  ;  t=2P=Poe(0.549)(2)P=Po(0.33333)%=PPo(100)=Po(0.33333)Po(100)%=33.33%@10 a.m.\:\:;\:\:t=-2\\ P_{\:}=\:P_{o\:}e^{\left(0.549\right)\left(-2\right)}\\ P_{\:}=\:P_{o\:}\left(0.33333\right)\\ \%=\frac{P}{P_o}{(100)}=\frac{P_o\left(0.33333\right)}{P_o}{(100)}\\ \%=\:33.33\%