Author Archives: nikidomingo

Elementary Differential Equations by Dela Fuente, Feliciano, and Uy Chapter 10 Problem 2 — Applications of Ordinary First-Ordered Differential Equations


Find the equation of the curve so drawn that every point on it is equidistant from the origin and the intersection of the x-axis with the normal to the curve at the point.


Solution:

Plot points on the curve,

A(x1,y1)A(x_{1},y_{1})

We all know that a Slope of a Tangent corresponds to m, and its negative reciprocal is equal to the Slope of a Normal. Thus, we use Point-Slope Formula.

yy1=1m(xx1)y-y_{1}=-\frac{1}{m}\left(x-x_{1}\right)

As the normal intersects the x-axis, y = 0

Substituting to the previous equation, we get

y1=1m(xx1)my1=1(xx1)my1=x+x1x=x1+my1\begin{align*} -y_{1}&=-\frac{1}{m}\left(x-x_{1}\right)\\ -my_{1}&=-1\left(x-x_{1}\right)\\ -my_{1}&=-x+x_{1}\\ x&=x_{1}+my_{1} \end{align*}

By using distance formula, from the origin (0,0), to point (x1+y1) = from intersection to (x1+y1)

(x10)2+(y10)2=(x1+my1x1)2+(0y1)2x12+y12=m2y12+y12x12+y12=m2y12+y12x12=m2y12x1=m1y1    ;m=dydxx1=dydxy1\begin{align*} \sqrt{\left(x_{1}-0\right)^2+\left(y_{1}-0\right)^2}&=\sqrt{\left(x_{1}+my_{1}-x_{1}\right)^2+\left(0-y_{1}\right)^2}\\ \sqrt{x_{1}^2+y_{1}^2}&=\sqrt{m^2y_{1}^2+y_{1}^2}\\ x_{1}^2+y_{1}^2&=m^2y_{1}^2+y_{1}^2\\ x_{1}^2&=m^2y_{1}^2\\ x_{1}&=m_{1}y_{1}\:\:\:\:;m=\frac{dy}{dx}\\ x_{1}&=\frac{dy}{dx}y_{1} \end{align*}

Change x1 and y1 to x and y,

x=ydydxxdx=ydy\begin{align*} x&=y\frac{dy}{dx}\\ xdx&=ydy \end{align*}

By integrating,

ydx=xdyy22=x22+Cy2=x2+2C\begin{align*} \int \:ydx&=\int \:xdy\\ \frac{y^2}{2}&=\frac{x^2}{2}+C\\ y^2&={x^2}+2C\\ \end{align*}

We get,

y2x2=2Cy^2-x^2-=2C

Advertisements
Advertisements

Elementary Differential Equations by Dela Fuente, Feliciano, and Uy Chapter 9 Problem 6 — Special Second-Ordered Differential Equations


Solve the following differential equation

yy(y)2+y=0yy''-\left(y'\right)^2+y'=0

Solutions:

Basically, We need to make the orders of each term to 1. To be able to further break down the equation.

soweletP=y             Pdpdy=yso\:we\:let\:P=y' \\ \:\:\:\:\:\:\:\:\:\:\:\:\:P\frac{dp}{dy}=y''

Substituting to the equation, we get

yPdPdyP2+P=0yP\frac{dP}{dy}-P^2+P=0

Removing the variables y and P from the 1st term we get

dPdxPy+1y=0      ,theequationhasbecomeaFOLDE  dPdyPy=1y           T(y)=1y,     Q(y)=1y    ϕ=e1ydy=y1         Pϕ=ϕQ(y)dy+C1            Py1=y1(y1)dy+C1Py1=y2dy+C1Py=1y+C1    P=1+yC1dydx=1+yC1\frac{dP}{dx}-\frac{P}{y}+\frac{1}{y}=0\:\:\:\:\:\: , the \:equation\:has\:become\:a \:FOLDE\\ \;\\ \frac{dP}{dy}-\frac{P}{y}=-\frac{1}{y}\:\:\:\:\:\:\:\:\:\:\:T\left(y\right)=-\frac{1}{y},\:\:\:\:\:Q\left(y\right)=-\frac{1}{y}\\ \:\\\:\:\:\: \phi =e^{\int \:-\frac{1}{y}dy}\\ =y^{-1} \\\:\:\:\:\:\:\:\:\:P\phi=\int\phi\:Q(y)dy\:+\:C_{1} \\\:\:\:\:\:\:\:\:\:\:\:\:Py^{-1}=\int \:y^{-1}\left(-y^{-1}\right)dy+C_{1} \\ Py^{-1}=\int \:-y^{-2}dy+C_{1} \\ \:\\ \frac{P}{y}=\frac{1}{y}+C_{1} \\\: \:\\\:\: P=1+yC_{1} \\ \frac{dy}{dx}=1+yC_{1}

By means of Separation of Variables

dy1+yC1=dxdy1+yC1=dx        letu=1+yC1      du=C1dyduC1=dy   1C1duu=dx           1C1lnu=x+C2\\ \frac{dy}{1+yC_{1}}=\:dx \\ \int \:\frac{dy}{1+yC_{1}}=\int \:dx \\\:\:\:\:\:\:\:\: let\:u=1+yC_{1} \\\:\:\:\:\:\: du=C_{1}dy\\ \frac{du}{C_{1}}=dy \\\:\:\: \frac{1}{C_{1}}\int \:\frac{du}{u}=\int \:dx \\\:\:\:\:\:\:\:\:\:\:\: \frac{1}{C_{1}}ln\:u=x+C_{2}

We get

ln1+yC1=C1x+C2ln\left|1+yC_{1}\right|=C_{1}x+C_{2}

Advertisements
Advertisements