Category Archives: Calculus

Includes differential, integral and series calculus

Differential and Integral Calculus by Feliciano and Uy, Exercise 1.3, Problem 18

Advertisements

PROBLEM:

Evaluate limxπ(sin2(x)1+cos(x)).\displaystyle \lim\limits_{x\to \pi }\left(\frac{\sin^2\left(x\right)}{1+\cos\left(x\right)}\right).


Advertisements

SOLUTION:

Direct substitution of x=πx=\pi gives the indeterminate form 00\frac{0}{0}. Therefore, we should apply trigonometric identities.

We know the Pythagorean identity, sin2(x)=1cos2(x)\sin^2\left(x\right)=1-\cos^2\left(x\right). Therefore, we have

limxπ(sin2(x)1+cos(x))=limxπ(1cos2(x)1+cos(x))=limxπ((1+cos(x))(1cos(x))1+cos(x))=limxπ(1cos(x))=(1cos(π))=(1(1))=2  (Answer)\begin{align*} \displaystyle \lim\limits_{x\to \pi }\left(\displaystyle \frac{\sin^2\left(x\right)}{1+\cos\left(x\right)}\right) & = \displaystyle \lim\limits_{x\to \pi }\left(\displaystyle \frac{1-\cos^2\left(x\right)}{1+\cos\left(x\right)}\right) \\ \\ & = \displaystyle \lim\limits_{x\to \pi }\left(\displaystyle \frac{\left(1+\cos\left(x\right)\right)\left(1-\cos\left(x\right)\right)}{1+\cos\left(x\right)}\right)\\ \\ & =\lim\limits_{x\to \pi }\left(1-\cos\left(x\right)\right)\\ \\ & =\left(1-\cos\left(\pi \right)\right)\\ \\ & =\left(1-\left(-1\right)\right)\\ \\ & =2 \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

Advertisements
Advertisements

Mathematics



Advertisements
Advertisements

Differential and Integral Calculus by Feliciano and Uy, Exercise 1.3, Problem 17

Advertisements

PROBLEM:

Evaluate limx0(sin(x)sin(2x)1cos(x)).\displaystyle \lim\limits_{x\to 0}\left(\displaystyle \frac{\sin\left(x\right)\sin\left(2x\right)}{1-\cos\left(x\right)}\right).


Advertisements

SOLUTION:

Direct substitution of x=0x=0 gives the indeterminate form 00\frac{0}{0}. Therefore, we should apply trigonometric identities.

We know that sin(2x)=2sin(x)cos(x)\sin\left(2x\right)=2\sin\left(x\right)\cos\left(x\right), so we can rewrite the original function as

limx0(sin(x)sin(2x)1cos(x))=limx0(sin(x)2(sin(x)cos(x))1cos(x))=2limx0(sin2(x)cos(x)1cos(x))\begin{align*} \displaystyle \lim\limits_{x\to 0}\left(\displaystyle \frac{\sin\left(x\right)\sin\left(2x\right)}{1-\cos\left(x\right)}\right) & =\lim\limits_{x\to 0}\left(\frac{\sin\left(x\right)\cdot 2\left(\sin\left(x\right) \cos\left(x\right)\right)}{1-\cos\left(x\right)}\right)\\ \\ & =\displaystyle 2\cdot \lim\limits_{x\to 0}\left(\frac{\sin^2\left(x\right)\cos\left(x\right)}{1-\cos\left(x\right)}\right)\\ \end{align*}

We also know the Pythagorean identity sin2(x)=1cos2(x)\sin^2\left(x\right)=1-\cos^2\left(x\right). So,

limx0(sin(x)sin(2x)1cos(x))=2limx0((1cos2(x))cos(x)1cos(x))=2limx0((1+cos(x))(1cos(x))cos(x)1cos(x))=2limx0((1+cos(x))cos(x))=2((1+cos(0))cos(0))=2((1+1)1)=4  (Answer)\begin{align*} \displaystyle \lim\limits_{x\to 0}\left(\displaystyle \frac{\sin\left(x\right)\sin\left(2x\right)}{1-\cos\left(x\right)}\right) & =2\cdot \lim\limits_{x\to 0}\left(\frac{\left(1-\cos^2\left(x\right)\right)\cos\left(x\right)}{1-\cos\left(x\right)}\right)\\ \\ & =2\cdot \lim\limits_{x\to 0}\left(\frac{\left(1+\cos\left(x\right)\right)\left(1-\cos\left(x\right)\right)\cos\left(x\right)}{1-\cos\left(x\right)}\right) \\ \\ & =2\cdot \lim\limits_{x\to 0}\left(\left(1+\cos\left(x\right)\right)\cos\left(x\right)\right) \\ \\ & = 2\cdot \left(\left(1+\cos\left(0\right)\right)\cos\left(0\right)\right) \\ \\ & =2\cdot \left(\left(1+1\right)\cdot 1\right) \\ \\ & =4 \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

Advertisements
Advertisements

Differential and Integral Calculus by Feliciano and Uy, Exercise 1.3, Problem 16

Advertisements

PROBLEM:

Evaluate limx0(1cos2(x)1+cos(x)) \displaystyle \lim\limits_{x\to 0}\left(\frac{1-\cos^2\left(x\right)}{1+\cos\left(x\right)}\right)


Advertisements

SOLUTION:

This problem can be solved using a direct substitution of x=0x=0. That is

limx0(1cos2x1+cosx)=1cos2(0)1+cos(0)=111+1=0  (Answer)\begin{align*} \lim\limits_{x\to 0}\left(\frac{1-\cos^2 x }{1+\cos x }\right) & =\frac{1-\cos^2\left(0\right)}{1+\cos\left(0\right)} \\ \\ & =\frac{1-1}{1+1}\\ \\ & = 0 \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

Advertisements
Advertisements

Differential and Integral Calculus by Feliciano and Uy, Exercise 1.3, Problem 15

Advertisements

PROBLEM:

Evaluate limx0(sin3xsinxtanx) \displaystyle \lim_{x\to 0}\left(\frac{\sin^3x}{\sin x-\tan x}\right).


Advertisements

SOLUTION:

A straight substitution of x=π4\displaystyle x=\frac{\pi }{4} leads to the indeterminate form 00\displaystyle \frac{0}{0} which is meaningless.

Therefore, to evaluate the limit of the given function, we proceed as follows

limx0(sin3xsinxtanx)=limx0(sin3xsinxsinxcosx)=limx0(sin3xsinxcosxsinxcosx)=limx0(sin3xcosxsinxcosxsinx)=limx0(sin3xcosx(sinx)(cosx1))=limx0(sin2xcosx(cosx1))=limx0((1cos2x)cosx(1cosx))=limx0((1+cosx)(1cosx)cosx(1cosx))=limx0((1+cosx)cos(x)1)=1limx0((1+cosx)cosx)=1(1+cos0)cos0=1(1+1)1=2  (Answer)\begin{align*} \displaystyle \lim _{x\to 0}\left(\frac{\sin^3x}{\sin x-\tan x}\right) & =\lim _{x\to 0}\left(\frac{\sin^3x}{\sin x-\frac{\sin x}{\cos x}}\right) \\ \\ & =\lim _{x\to 0}\left(\frac{\sin^3 x}{\frac{\sin x \cos x - \sin x}{\cos x}}\right) \\ \\ & = \lim _{x\to 0}\left(\frac{\sin^3 x \cos x }{\sin x \cos x - \sin x}\right) \\ \\ &=\lim _{x\to \:0}\left(\frac{\sin^3 x \cos x}{\left(\sin x \right)\left(\cos x-1\right)}\right) \\ \\ & =\lim _{x\to 0}\left(\frac{\sin^2 x \cos x }{\left(\cos x -1\right)}\right) \\ \\ & =\lim _{x\to 0}\left(\frac{\left(1-\cos^2 x \right) \cdot\cos x }{-\left(1-\cos x \right)}\right) \\ \\ & =\lim\limits_{x\to 0}\left(\frac{\left(1+\cos x \right) \left(1-\cos x \right) \cdot\cos x }{-\left(1-\cos x \right)}\right) \\ \\ & =\lim _{x\to 0}\left(\frac{\left(1+\cos x \right) \cdot \cos\left(x\right)}{-1}\right) \\ \\ & =-1\cdot \lim _{x\to 0}\left(\left(1+\cos x\right)\cdot\cos x \right) \\ \\ & =-1\cdot \left(1+\cos 0 \right)\cdot \cos 0 \\ \\ & =-1\cdot \left(1+1\right)\cdot 1 \\ \\ & =-2 \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

Advertisements
Advertisements

Differential and Integral Calculus by Feliciano and Uy, Exercise 1.3, Problem 14

Advertisements

PROBLEM:

Evaluate limxπ4(tan2xsec2x)\displaystyle \lim\limits_{x\to \frac{\pi }{4}}\left(\frac{\tan\:2x}{\sec\:2x}\right).


Advertisements

SOLUTION:

A straight substitution of x=π4x=\frac{\pi }{4} leads to the indeterminate form 00\frac{0}{0} which is meaningless.

Therefore, to evaluate the limit of the given function, we proceed as follows

limxπ4(tan2xsec2x)=limxπ4(sin2xcos2x1cos2x)=limxπ4(sin2x)=sin(2π4)=sinπ2=1  (Answer)\begin{align*} \displaystyle \lim\limits_{x\to \:\frac{\pi \:}{4}}\left(\frac{\tan\:2x}{\sec\:2x}\right) & =\lim\limits_{x\to \frac{\pi }{4}}\left(\frac{\frac{\sin\:2x}{\cos\:2x}}{\frac{1}{\cos\:2x}}\right) \\ \\ & =\lim\limits_{x\to \:\frac{\pi \:}{4}}\left(\sin\:2x\right) \\ \\ & =\sin\left(2\cdot \frac{\pi }{4}\right) \\ \\ & =\sin\frac{\pi }{2} \\ \\ & =1 \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

Advertisements
Advertisements

Differential and Integral Calculus by Feliciano and Uy, Exercise 1.3, Problem 13

Advertisements

PROBLEM:

Evaluate limx3(x29x3)\displaystyle \lim\limits_{x\to 3}\left(\frac{\sqrt{x^2-9}}{x-3}\right).


Advertisements

SOLUTION:

A straight substitution of x=3x=3 leads to the indeterminate form 00\frac{0}{0} which is meaningless.

Therefore, to evaluate the limit of the given function, we proceed as follows

limx3(x29x3)=limx3(x29x3x29x29)=limx3((x+3)(x3)(x3)x29)=limx3(x29(x3)x29)=limx3(x+3x29)=3+3329=60=  (Answer)\begin{align*} \lim\limits_{x\to \:3}\left(\frac{\sqrt{x^2-9}}{x-3}\right) & =\lim\limits_{x\to 3}\left(\frac{\sqrt{x^2-9}}{x-3}\cdot \frac{\sqrt{x^2-9}}{\sqrt{x^2-9}}\right) \\ \\ & =\lim\limits_{x\to 3}\left(\frac{\left(x+3\right)\left(x-3\right)}{\left(x-3\right)\sqrt{x^2-9}}\right) \\ \\ & =\lim\limits_{x\to 3}\left(\frac{x^2-9}{\left(x-3\right)\sqrt{x^2-9}}\right) \\ \\ & =\lim _{x\to 3}\left(\frac{x+3}{\sqrt{x^2-9}}\right) \\ \\ & =\frac{3+3}{\sqrt{3^2-9}} \\ \\ & =\frac{6}{0} \\ \\ & =\infty \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

Since the function’s limit is different from the left to its limits from the right, the limit does not exist. 


Advertisements
Advertisements
Cover photo for Chapter 1: Limits of the textbook Differential and Integral Calculus by Feliciano and Uy

Chapter 1: Limits


Exercise 1.1: Functional Notation

Advertisements

Exercise 1.2: Theorems on Limits

Advertisements

Exercise 1.3: Indeterminate Forms

Advertisements

Exercise 1.4: Limit at Infinity

Advertisements

Exercise 1.5: Continuity

Problem 1

Problem 2

Problem 3

Problem 4

Problem 5

Problem 6

Advertisements

Exercise 1.6: Asymptotes

Problem 1

Problem 2

Problem 3

Problem 4

Problem 5

Problem 6

Problem 7

Problem 8

Problem 9

Problem 10

Advertisements

Advertisements
Advertisements
Differential and Integral Calculus by Feliciano and Uy Banner

Differential and Integral Calculus by Feliciano and Uy Complete Solution Manual



Advertisements
Advertisements

Differential and Integral Calculus by Feliciano and Uy, Exercise 1.3, Problem 12

Advertisements

PROBLEM:

Evaluate limx0(1x(131x+9))\displaystyle \lim\limits_{x\to 0}\left(\frac{1}{x}\left(\frac{1}{3}-\frac{1}{\sqrt{x+9}}\right)\right)


Advertisements

SOLUTION: 

A straight substitution of x=0x=0 leads to the indeterminate form 000\cdot 0 which is meaningless.

Therefore, to evaluate the limit of the given function, we proceed as follows

limx0(1x(131x+9))=limx0(1(131x+9)x)=limx0(x+933x+9x)=limx0(x+933xx+9)=limx0(x+933xx+9)x+9+3x+9+3=limx0(x3x(x+9+3)x+9)=limx0(13(x+9+3)x+9)=13(0+9+3)0+9=154  (Answer)\begin{align*} \lim\limits_{x\to \:0}\left(\frac{1}{x}\left(\frac{1}{3}-\frac{1}{\sqrt{x+9}}\right)\right) & =\lim\limits_{x\to 0}\left(\frac{1\cdot \:\left(\frac{1}{3}-\frac{1}{\sqrt{x+9}}\right)}{x}\right) \\ \\ & =\lim\limits_{x\to 0}\left(\frac{\frac{\sqrt{x+9}-3}{3\sqrt{x+9}}}{x}\right) \\ \\ & =\lim\limits_{x\to 0}\left(\frac{\sqrt{x+9}-3}{3x\sqrt{x+9}}\right) \\ \\ & =\lim\limits_{x\to 0}\left(\frac{\sqrt{x+9}-3}{3x\sqrt{x+9}}\right)\cdot \frac{\sqrt{x+9}+3}{\sqrt{x+9}+3} \\ \\ & =\lim\limits_{x\to 0}\left(\frac{x}{3x\left(\sqrt{x+9}+3\right)\sqrt{x+9}}\right) \\ \\ & =\lim\limits_{x\to 0}\left(\frac{1}{3\left(\sqrt{x+9}+3\right)\sqrt{x+9}}\right) \\ \\ & =\frac{1}{3\left(\sqrt{0+9}+3\right)\sqrt{0+9}} \\ \\ & =\frac{1}{54} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

Advertisements
Advertisements