Category Archives: Differential Equations

Differential Equations

Elementary Differential Equations by Dela Fuente, Feliciano and Uy Physical Application 2: Exponential Growth and Decay


A certain radioactive material follows the law of exponential change and has a half life of 38 hours. Find how long it takes for 90% of the radioactivity to be dissipated.


Solution:

Use the formula:

S=Ce^{-kt}

First, find the constant of proportionality. In the problem, after 38 hours, half of the radioactivity has been dissipated and a half has been retained. So we can assume that S = 0.5So when t = 38 hrs and C = So.

\left(0.5\right)So=\left(So\right)e^{-k\left(38\right)}

And then solve for k:

k=-0.018241

And then substitute k to the formula:

S=Ce^{-0.018241\left(t\right)}

Now we can solve for the time(t). According to the problem, 90% of the radioactivity is dissipated, so 10% is retained. So we can assume that S = 0.1So and change C = So.

\left(0.1\right)So=\left(So\right)e^{-0.018241\left(t\right)}

And then solve for time(t):

t\:=\:126.23\:hrs

Advertisements
Advertisements

Elementary Differential Equations by Dela Fuente, Feliciano and Uy Chapter 10 Problem 3 — Applications of Ordinary First-Ordered Differential Equations


A tank contains 400 liters of brine. Twelve liters of brine, each containing 2.5 N of dissolved salt, enter the tank per minute, and the mixture, assumed uniform leaves at the rate of 8 liters per min. If the concentration is to be 2 N/litre at the end of one hour, how many newtons of salt should there be present in the tank originally?


Solution:

Consider the following illustration

\frac{dS}{dt}=\left(\frac{dS}{dt}\right)_{en}-\left(\frac{dS}{dt}\right)_{es}

Using,

V_{brine}+\left(rate\:of\:brine\:out\right)t\\\frac{dS}{dt}=\frac{8L}{M}\left(\frac{S}{400+4t}\right)\\=\frac{8S}{\left(400+4t\right)}\\\frac{dS}{dt}=\frac{2S}{\left(100+t\right)}

Using the general solution:

\frac{dS}{dt}=30-\frac{2S}{\left(100+t\right)}\\\frac{dS}{dt}+\frac{2S}{\left(100+t\right)}=30

To solve we will use First Order Linear Differential Equation (FOLDE) where:

P_{\left(t\right)}=\frac{2}{\left(100+t\right)}\:,\:Q_{\left(t\right)}=30

Solve for the integrating factor using the formula:

\sigma =e^{\int \:P_{\left(t\right)}dt}

Apply,

\sigma =e^{\int \:\frac{2}{100+t}dt}\\\sigma =e^{2ln\left(100+t\right)}\\\sigma \:=e^{ln\left(100+t\right)^2}\\\sigma \:=\left(100+t\right)^2

Substitute the given value to the formula:

S\sigma =\int \:\sigma Q\left(t\right)dt+C

Apply,

S\left(100+t\right)^2=\int \:\left(100+t\right)^230dt+C\\S\left(100+t\right)^2=30\int \:\left(100+t\right)^2dt+C\\S\left(100+t\right)^2=30\:\frac{\left(100+t\right)^{^3}}{3}dt+C\\S\left(100+t\right)^2=10\left(100+t\right)^{^3}+C\rightarrow eqn.1

Evaluate C; @t=1hr

Convert 1hr to minutes, where 1hr is simply 60 minutes.

S\left(100+60\right)\:2\:=10\left(100+60\right)\:^3\\C=\frac{2N}{L}\:;\:C=\frac{S}{\left(400+4t\right)}

Get the value of S using the equation:

\:C=\frac{S}{\left(400+4t\right)}

Isolate S,

S=C\left(400+4t\right);\:C=2,\:t=60\\S=2\left(400+4\left(60\right)\right)\\S=1280N

Get the value of C using Eqn.1

S\left(100+t\right)^2=10\left(100+t\right)^{^3}+C; S=1280 , t=60\\
1280\left(100+60\right)^2=10\left(100+60\right)^{^3}+C\\32768000=40960000+C\\32768000-40960000=C\\ C=-8192000

With the presence of the value of C we will now have our working equation:

S\left(100+t\right)^2=10\left(100+t\right)^{^3}-8192000

Using the given working equation, solve for the value of S @ t=0

S\left(100+t\right)^2=10\left(100+t\right)^{^3}-8192000; t=0\\S\left(100+0\right)^2=10\left(100+0\right)^{^3}-8192000\\\frac{S\left(1000\right)^2}{1000}=\frac{1808000}{1000}\\S=180.8 N

Advertisements
Advertisements

Elementary Differential Equations by Dela Fuente, Feliciano, and Uy Chapter 10 Problem 12 — Applications of Ordinary First-Ordered Differential Equations


A bacterial population follows the law of exponential growth. If between noon and 2 p.m. the population triples, at what time should the population become 100 times what it was at noon? At 10 a.m. what percentage was present?


SOLUTION:

First, we denote

P as the population of bacteria at anytime

Po as the original bacterial population

t = 0 (12 noon)

t = 2 (2 p.m.)

Let us determine the given and the required

GIVEN:

@12nn to 2p.m.; P= 3Po

REQUIRED:

  1. what time should the population become 100 times
  2. at noon
  3. percentage at 10 a.m.

Using the formula of Applications of Ordinary First-Ordered Differential Equations under Exponential Growth or Decay

\frac{dP}{dt}=kP \\
\int \:\frac{dP}{P}=\int \:kdt\\
e^{ln\:P}\:=\:e^{kt\:+\:C}\\
P=\:Ce^{kt}\:\:\:\:\:(Eq.1)\\
@t=0; P=P_o\\
P_o=Ce^{kt}\\
P_o=Ce^{k\left(0\right)}\\
P_o = C

Substituting to Eq.1., we get

P=\:P_{o\:}e^{kt}\:\:\:\:\:\:\:(Eq.2)

Then from the given condition, from 12 noon to 2 p.m., the population triples (using Eq.2), we will solve for the value of k

@t= 2\:;\:P= 3P_o\\
P=\:P_{o\:}e^{kt}\\
3P_{o\:}=\:P_{o\:}e^{k\left(2\right)}\\
k=0.54931

We will then come up with the working equation (WE), this will help us solve the required problems

P_{\:}=\:P_{o\:}e^{\left(0.54931\right)t}

1.) what time should the population become 100 times

Using WE,

t=?\:\:;\:\:P=100P_o\\
P_{\:}=\:P_{o\:}e^{\left(0.54931\right)t}\\
100P_{o\:}=\:P_{o\:}e^{\left(0.54931\right)t}\\
t=8.38\: hrs.\\
t= 8:22:48\: p.m. \; or\:8:23\:p.m.

2.) at noon

P=P_o

3.) percentage at 10 a.m.

@10 a.m.\:\:;\:\:t=-2\\
P_{\:}=\:P_{o\:}e^{\left(0.549\right)\left(-2\right)}\\
P_{\:}=\:P_{o\:}\left(0.33333\right)\\
\%=\frac{P}{P_o}{(100)}=\frac{P_o\left(0.33333\right)}{P_o}{(100)}\\
\%=\:33.33\%

Elementary Differential Equations by Dela Fuente, Feliciano, and Uy Chapter 10 Problem 2 — Applications of Ordinary First-Ordered Differential Equations


Find the equation of the curve so drawn that every point on it is equidistant from the origin and the intersection of the x-axis with the normal to the curve at the point.


Solution:

Plot points on the curve,

A(x_{1},y_{1})

We all know that a Slope of a Tangent corresponds to m, and its negative reciprocal is equal to the Slope of a Normal. Thus, we use Point-Slope Formula.

y-y_{1}=-\frac{1}{m}\left(x-x_{1}\right)

As the normal intersects the x-axis, y = 0

Substituting to the previous equation, we get

\begin{align*}
-y_{1}&=-\frac{1}{m}\left(x-x_{1}\right)\\
-my_{1}&=-1\left(x-x_{1}\right)\\
-my_{1}&=-x+x_{1}\\
x&=x_{1}+my_{1}
\end{align*}



By using distance formula, from the origin (0,0), to point (x1+y1) = from intersection to (x1+y1)

\begin{align*}
\sqrt{\left(x_{1}-0\right)^2+\left(y_{1}-0\right)^2}&=\sqrt{\left(x_{1}+my_{1}-x_{1}\right)^2+\left(0-y_{1}\right)^2}\\
\sqrt{x_{1}^2+y_{1}^2}&=\sqrt{m^2y_{1}^2+y_{1}^2}\\
x_{1}^2+y_{1}^2&=m^2y_{1}^2+y_{1}^2\\
x_{1}^2&=m^2y_{1}^2\\
x_{1}&=m_{1}y_{1}\:\:\:\:;m=\frac{dy}{dx}\\
x_{1}&=\frac{dy}{dx}y_{1}
\end{align*}

Change x1 and y1 to x and y,

\begin{align*}
x&=y\frac{dy}{dx}\\
xdx&=ydy
\end{align*}

By integrating,

\begin{align*}

\int \:ydx&=\int \:xdy\\
\frac{y^2}{2}&=\frac{x^2}{2}+C\\
y^2&={x^2}+2C\\
\end{align*}

We get,

y^2-x^2-=2C

Advertisements
Advertisements

Elementary Differential Equations by Dela Fuente, Feliciano, and Uy Chapter 9 Problem 1 – Special Second-Ordered Differential Equations


Find the General Solution

\frac{d}{dx}\left(\frac{dy}{dx}\right)=\:6x\:+\:3

Solution:

\frac{d}{dx}\left(\frac{dy}{dx}\right)=\:6x\:+\:3 \\ 

 solve\; the\; equation\; using\; case\; 1,\\

let\; u=\frac{dy}{dx} \\
\int \:\frac{du}{dx}\:=\:\int \:\left(6x\:+\:3\right)\\

using\;  separation\; of\; variable\; divide\;   both\;  sides\;  by\;  dx,\\

\int \:du\:=\:\int \:\left(6x\:+\:3\right)dx\\

by\; integrating\; using\; the\; sum\; rule:\\
we\; get,\\

u=3x^2\:+\:3x\:+\:C_1\\

substitute\; the\; value\; of\; u=\frac{dy}{dx} \\

\frac{dy}{dx}=3x^2\:+\:3x\:+\:C_1\\

using\;  separation\; of\; variable:\\

\int \:dy = \int \:\left(3x^2+3x\:+\:C_1\right)dx\\

apply\; the\; sum\; rule:\\

\int \:dy=\int \:3x^2dx+\int  \:3xdx+ \int \:C_1dx\\

y=x^3+\frac{3x^2}{2}+C_1x+C_2\\

Advertisements
Advertisements

Elementary Differential Equations by Dela Fuente, Feliciano, and Uy Chapter 9 Problem 4 — Special Second-Ordered Differential Equations


Find the general solution of the differential equation

y''+2y'-6x-3=0

Solution:

A second-order differential equation can be written in the form:

ay″ + by' + cy = g(x)

Therefore, the problem given is a second order linear equation.

Here are STEPS on how to get the general solution:

i. simplify the equation to a Second ODE Form

y''+2y'=6x+3

ii. Let

\begin{align*}
y' = P=\frac{dy}{dx} 
\\
\\
and
\\
\\
y'' = \frac{dP}{dx}
\\

\\
\frac{dP}{dx}+P2\:=\:6x+3
\end{align*}

iii. By recalling, we can see that the equation is in First-order linear differential equation form. Solving the simplified equation using FOLDE.

\begin{align*}
P(x) & =2
\\
and
\\
Q(x) &=6x+3
\\
\\
\frac{dP}{dx}+P2\:& =\:6x+3
\end{align*}

Find the integrating factor

\begin{align*}
ɸ & =e^{\int \:P\left(x\right)dx}
\\
ɸ & =e^{\int \:\:2dx}
\\
ɸ & =e^{2x}
\end{align*}

Substituting the I.F. to the formula

\begin{align*}
Pɸ & =\int \:ɸQ\left(x\right)dx+C_1
\\
Pe^{2x} & =\int \:e^{2x}(6x+3)dx+C_1
\\
Pe^{2x} & =\int \:\left(e^{2x}6x+3e^{2x}\right)dx+C_1
\end{align*}

Integrating the first term

\begin{align*}
\int \:e^{2x}6xdx=

6\cdot \int \:xe^{2x}dx
\\
\end{align*}

Let u = 2x and du/2 = dx

\frac{3}{2}\int \:e^uudu

By IBP, Let v=u, dv=du and eudu, n=eu.

\begin{align*}
nv-\int ndv &
\\
ue^u-\frac{3}{2}\int \:\:e^udu & = e^uu-e^u
\\
& =3e^{2x}x-\frac{3}{2}e^{2x}
\end{align*}

for the second term

\int \:3e^{2x}dx

Let u = 2x and du/2 = dx

\begin{align*}
\frac{3}{2}\int \:e^udu & =\frac{3}{2}e^u
\\
& =\frac{3}{2}e^{2x}
\end{align*}

Combining all the solved terms we get

\begin{align*}
Pe^{2x} & =3e^{2x}x-\frac{3}{2}e^{2x}+\frac{3}{2}e^{2x}+C_1
\\
Pe^{2x} & =3e^{2x}x+C_1
\end{align*}

Based on the equation that we derived it is now a separable differential equation, therefore,

\begin{align*}
&\left[\frac{dy}{dx}e^{2x}=3e^{2x}x+C_1\right]\frac{1}{e^{2x}}
\\
\frac{dy}{dx} & =3x+\frac{C_1}{e^{2x}}
\\
\int \:dy & =\int \:\left(3x+\frac{C_1}{e^{2x}}\right)dx+C_2
\end{align*}

GENERAL SOLUTION:

y=\frac{3x^2}{2}-\frac{C_1e^{-2x}}{2}+C_2

Advertisements
Advertisements

Elementary Differential Equations by Dela Fuente, Feliciano and Uy Chapter 9 Problem 5 — Special Second-Ordered Differential Equations


Find the general solution of the differential equation

yy''+2\left(y\right)^2=0

Solution:

Based on Special Second-Ordered Differential Equation: Special case 3

F\left(\frac{d^2y}{dx^2},\:\frac{dy}{dx},\:y\right)=0

Denote and substitute to the given equation.

P= y' =\frac{dy}{dx}  \\ P\frac{dp}{dy}= y'' =\frac{d^2y}{dx^2}

We will have,

y(P\frac{dp}{dx})+2(P)^2=0

Divide both sides with

 \:\frac{1}{yP}

We will come to,

\frac{dp}{dy}+\frac{2P}{y}=0

Tranpose,

\frac{2P}{y}

We will have

\frac{dp}{dy}=-\frac{2P}{y}

Integrate both sides,

\int \frac{dp}{dy}=-\int\frac{2P}{y}

The equation will become a SEPARABLE DIFFERENTIAL EQUATION, multiply both sides with

\frac{dy}{P}\:

We will come to the equation:

 \frac{dp}{P}=-\frac{2}{y}dy

Integrate both sides,

\int \frac{dp}{P}=-\int\frac{2}{y}dy

The answer will be:

\ln \left(P\right)=\ln \left(y^{-2}\right)+lnC

Apply logarithmic definition and exponent rule

loga^b=c\:then,\:b=a^c\\a^{b+c}=a^ba^c

The answer will be:

P=\frac{C}{y^2}

Recall that

P=\frac{dy}{dx}

Substitute the original value of P,

\frac{dy}{dx}=\frac{C}{y^2}

Again, this is a Separable Differential Equation, multiply both sides with:

y^{2}dx

It will become

y^{2}dy=Cdx

Integrate both sides,

\int y^{2}dy=\int Cdx

The answer will be

\frac{y^3}{3}=C1x+C2

Multiply both sides with 3 and the final answer will be

y^3=C_1x+C_2

You can still solve it explicitly,

y=\sqrt[3]{C_1x+C_2}

Advertisements
Advertisements

Elementary Differential Equations by Dela Fuente, Feliciano, and Uy Chapter 9 Problem 6 — Special Second-Ordered Differential Equations


Solve the following differential equation

yy''-\left(y'\right)^2+y'=0

Solutions:

Basically, We need to make the orders of each term to 1. To be able to further break down the equation.

so\:we\:let\:P=y' \\
\:\:\:\:\:\:\:\:\:\:\:\:\:P\frac{dp}{dy}=y''

Substituting to the equation, we get

yP\frac{dP}{dy}-P^2+P=0

Removing the variables y and P from the 1st term we get

\frac{dP}{dx}-\frac{P}{y}+\frac{1}{y}=0\:\:\:\:\:\: , the \:equation\:has\:become\:a \:FOLDE\\
\;\\
\frac{dP}{dy}-\frac{P}{y}=-\frac{1}{y}\:\:\:\:\:\:\:\:\:\:\:T\left(y\right)=-\frac{1}{y},\:\:\:\:\:Q\left(y\right)=-\frac{1}{y}\\
\:\\\:\:\:\:
\phi =e^{\int \:-\frac{1}{y}dy}\\
=y^{-1}
\\\:\:\:\:\:\:\:\:\:P\phi=\int\phi\:Q(y)dy\:+\:C_{1}
\\\:\:\:\:\:\:\:\:\:\:\:\:Py^{-1}=\int \:y^{-1}\left(-y^{-1}\right)dy+C_{1}
\\
Py^{-1}=\int \:-y^{-2}dy+C_{1}
\\
\:\\
\frac{P}{y}=\frac{1}{y}+C_{1}
\\\:
\:\\\:\:
P=1+yC_{1}
\\
\frac{dy}{dx}=1+yC_{1}

By means of Separation of Variables

\\
\frac{dy}{1+yC_{1}}=\:dx
\\ 
\int \:\frac{dy}{1+yC_{1}}=\int \:dx
\\\:\:\:\:\:\:\:\:
let\:u=1+yC_{1}
\\\:\:\:\:\:\:
du=C_{1}dy\\
\frac{du}{C_{1}}=dy
\\\:\:\:
\frac{1}{C_{1}}\int \:\frac{du}{u}=\int \:dx
\\\:\:\:\:\:\:\:\:\:\:\:
\frac{1}{C_{1}}ln\:u=x+C_{2}

We get

ln\left|1+yC_{1}\right|=C_{1}x+C_{2}

Advertisements
Advertisements

Elementary Differential Equations by Dela Fuente, Feliciano, and Uy Chapter 9 Problem 2 — Special Second-Ordered Differential Equations


Question:

\frac{d}{dx}\left(x\:\frac{dy}{dx}\:+\left(1+x\right)\:y\right)\:=12\:\:;\:\frac{dy}{dx}=0,\:y=0,\:x=1

Solution:

Since the equation is in the form d/dx (dy/dx + y P(x) = Q(x) , we use Case 1

\begin{align*}
let\:u & = x\frac{dy}{dx}+\left(1+x\right)\:y
\\ \int \:\frac{du}{dx}\:&=\int \:12
\\u &=12x+C_1
\end{align*}

Solving for the value of C1 using the initial values.

\begin{align*}
x\frac{dy}{dx}+\left(1+x\right)y\: & =12x\:+C_1\:;\:\frac{dy}{dx}=0,\:y=0,\:x=1
\\1(0) + (1+1)0 & = 12(1) + C_1  
\\0+0 & =12+C_1
\\-12 & =C_1
\end{align*}

Rewriting the equation into the general form of a first-order linear differential equation (FOLDE).

\left[x\frac{dy}{dx}+\left(1+x\right)y=12x-12\right]\frac{1}{x}
\\\frac{dy}{dx}+\left(\frac{1+x}{x}\right)y=12-\frac{12}{x}
\\\frac{dy}{dx}+\left(\frac{1}{x}+1\right)y=12-\frac{12}{x}

Since the equation is now in the form of dy/dx + y P(x) = Q(x), we use FOLDE

\\\frac{dy}{dx}+\left(\frac{1}{x}+1\right)y=12-\frac{12}{x}

From the general form of a first-order differential equation, we have

\\P \left( x \right)= \left(\frac{1}{x}+1\right) 
\\Q\left( x \right)= 12-\frac{12}{x}

Compute for the integrating factor

\begin{align*}
\phi &= e^ {\int P\left(x \right) dx}
\\\phi & =e^{\int \:\left(\frac{1}{x}+1\right)dx}
\\\phi & \:=e^{\ln x+x}
\\\phi & \:=x\left(e^x\right)
\end{align*}

Substituting everything to the solution of a first-order linear differential equation, we have

y(xe^x)=\int xe^x\left(12-\frac{12}{x}\right)dx+C_2
\\y\left(xe^x\right)=\int \left(12xe^x-12e^x\right)dx+C_2
\\yxe^x=\int 12xe^x-\int \:12e^x\:dx+C_2​

Use Integration by Parts to solve for the first integral

\begin{align*}
\int \:12xe^xdx & = 12 \int xe^x dx\\ 
 u = x &  &du=dx  \\
dv = & e^x \  & v=e^x  \\
\text{Therefore} \\ 
uv-\int \:vdu & =xe^x-\int \:e^xdx \\
& =xe^x-e^x \\
\text{Consequently} \\
\int \:12xe^xdx & = 12 \left( xe^x-e^x\right)
\end{align*}

Therefore,

\begin{align*}
yxe^x & =12\left(xe^x-e^x\right)-12e^x+C_2
\\yxe^x &=12xe^x-12e^x-12e^x+C_2
\\yxe^x &=12xe^x-24e^x+C_2
\end{align*}

Solving for C2

\begin{align*}
yx & =12x-24+\frac{C_2}{e^x}\:\:;\:y=0,\:x=1
\\0\left(1\right) & =12\left(1\right)-24+\frac{C_2}{e^1}\:
\\0 & =12-24e+\frac{C_2}{e^1}\:
\\0 &=-12+\frac{C_2}{e^1}\:
\\12e^1 & =C_2\:
\end{align*}

Therefore, the solution to the problem is

yx=12x-24+\frac{12e^1}{e^x}
\\or
\\yx=12x-24+12e^{1-x}

Elementary Differential Equations by Dela Fuente, Feliciano, and Uy Chapter 9 Problem 1 — Special Second-Ordered Differential Equations


Find the general solution of the differential equation

\frac{d}{dx}\left(\frac{dy}{dx}\right)=6x+3

Solution:

\begin{align*}
\frac{d}{dx}\left(\frac{dy}{dx}\right) & =6x+3  \\\  \\
let\:u & =\frac{dy}{dx} \\\ \\
\frac{du}{dx} & =6x+3 \\\ \\
Integrate,\\
\int \frac{du}{dx} & =\int (6x+3)dx \\\ \\
\int \frac{du}{dx} & =6\int xdx+3\int dx \\\ \\
u & =\frac{6x^2}{2}+3x+C_1 \\\ \\
u & =3x^2+3x+C_1 \\\ \\
Substitute, \\
\frac{dy}{dx} & =3x^2+3x+C_1 \\\ \\
dy & =\left(3x^2+3x+C_1\right)dx \\\ \\
Integrate,\\
\int dy & =\int (3x^2+3x+C_1)dx \\\ \\
\int dy & =3\int x^2dx+3\int xdx+C_1\int dx \\\ \\
y & =\frac{3x^3}{3}+\frac{3x^2}{2}+C_1x+C_2 \\\ \\
Simplify, \\
y & =x^3+\frac{3x^2}{2}+C_1x+C_2 \\
\end{align*}

Advertisements
Advertisements